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Traditional evaluation of language models

Perplexity(w1, . . . , wn) = exp− 1

n

n∑
i=1

log pθ(wi|w<i)
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Goal of modern LLM evaluation

Modern LMs are intended to be general-purpose systems

Benchmarks typically evaluate a wide range of properties to assess
their general usability

In this overview, we will briefly introduce examples of properties to
evaluate and how evaluations are carried out practically
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What do we evaluate?
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Factual knowledge

We would like LLMs to include some knowledge of facts

Example: the LAMA task (Petroni et al., 2019) (derived from
Wikidata) is used in various benchmark collections
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Reasoning capabilities

LLMs are expected to have some ability to reason to reach
conclusions

Logical and mathematical reasoning

Multi-hop reasoning

Common-sense reasoning

Example from the HellaSwag benchmark (Zellers et al., 2019):
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Dialogue capabilities

We’d like LLMs to be user-friendly and behave well in dialogues
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LLM safety and alignment

LLMs are trained on web-scraped data, which may contain toxic
language that we do not want an interactive system to generate
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How do we evaluate?
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Evaluating by fine-tuning models

Early work in LLM benchmarking used a transfer learning approach

Models are fine-tuned for each task in the benchmark

Typical example: GLUE (Wang et al., 2019) and its successors
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Simple questions: multiple choice or a short answer

The MMLU benchmark (Hendrycks et al., 2021) uses
multiple-choice questions divided into 57 areas (anatomy, logic,

physical reasoning, …)

BigBench (Srivastava et al., 2023) includes ∼200 tasks, some of
which are multiple-choice and some require a short answer
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Using humans in evaluation

Humans have been used in evaluation in text-generation tasks
(including translation, summarization, dialogue)

Humans can evaluate specific aspects (e.g. fluency, accuracy) or
make a relative comparison of two or more outputs

Chatbot Arena (Chiang et al., 2024) is a platform that uses
crowdsourcing to compute a relative ranking of LLMs
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Using an LLM as an automatic evaluator

Recently, “LLM-as-a-judge” methods have become popular

Zheng et al. (2023) claim that GPT-4 rankings largely agree with
human rankings, but have some biases

AlpacaEval controls for length to avoid length bias in LLM
evaluators (Dubois et al., 2024)
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Main points: recap

LLM evaluation is designed to test their general usability

Benchmarks typically evaluate a wide range of capabilities

Evaluation formats range from simple answers to free
text-generation

It is becoming more common to use LLMs as evaluators
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