Introduction to Dialogue Systems

CHALMERS

Richard Johansson

richajo@chalmers.se

dialogue systems

(How can I help you?)

(want to book a table at Da Marco)

(How many people?)

(Four people)

(At what time?)

- "chatbots", "conversational agents", ...
- computational systems that we can interact with
- general challenges:
 - representing state
 - interacting with external resources
- no discussion of speech technologies here! ASR/TTS at endpoints

types of dialogue systems

- chit-chat / open-domain:
 - mostly for entertainment value
 - some use in therapy, education
 - · often unrestricted in terms of content
- task-oriented:
 - searching, booking, troubleshooting, ...
 - often more restricted/"controlled"

open-domain response generation: basic idea

basic idea introduced by Vinyals and Le (2015)

how do we represent the state (the history) of the conversation?

architecture with turn representations

(Serban et al., 2016)

example: DIALOGPT

- the DIALOGPT model (Zhang et al., 2020) is a GPT-2 transformer tuned on Reddit conversations
- like the original GPT models, the response generation task is framed as language modeling: a Transformer decoder
- the dialogue history is used as a prompt (start of sequence)

examples: Meena and Blender Bot

 Google's Meena (Adiwardana et al., 2020) and Facebook's Blender Bot (Roller et al., 2021) use encoder/decoder Transformers: the dialogue history is the input

open research problems in open-domain dialogue

- · decoding from the language model: avoiding bland answers
- maintaining consistency over a long conversation: "goldfish memory" (Xu et al., 2021)
- consistency with the outside world (Komeili et al., 2021)
- avoiding toxicity in generated outputs
- Huang et al. (2020) gives an overview of challenges

traditional task-oriented dialogue systems

task-oriented dialogue: challenges

- domain-specific design requires modularity
 - research has often focused on a module and less on end-to-end performance
 - pipeline design \Rightarrow risk of error propagation
- need to interact with external resources
- often highly specialized, training data often scarce

adapting pre-trained models for task-oriented dialogue

 Budzianowski and Vulic (2019) adapt GPT-2 for task-oriented response generation

 TOD-BERT (Wu et al., 2020) is a BERT-like model that could be used for several steps in task-oriented dialogue

dialogue datasets

- Reddit, Twitter, ...
- subtitles (http://opus.nlpl.eu/OpenSubtitles-v2018.php)
- technical support e.g. Ubuntu (Vinyals and Le, 2015)
- ConvAl2 (Dinan et al., 2020) http://convai.io/
- Persona-Chat (Zhang et al., 2018)
 https://github.com/facebookresearch/ParlAI/tree/main/parlai/tasks/personachat
- overview: A Survey of Available Corpora for Building Data-Driven Dialogue Systems (Serban et al., 2018)

evaluating dialogue systems

- word-based: overlap, perplexity, ...
- human-oriented evaluations: user satisfaction, fluency, ...
- there are conflicting opinions on how well they correlate:
 - Dinan et al. (2020) report weak correlations in the ConvAI2 challenge
 - Adiwardana et al. (2020) report good correlations between perplexity and human scores for the Meena chatbot

references

- D. Adiwardana, M.-T. Luong, D. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang, A. Kulshreshtha, G. Nemade, Y. Lu, and Q. V. Le. 2020. Towards a human-like open-domain chatbot. arXiv:2001.09977.
- P. Budzianowski and I. Vulic. 2019. Hello, it's GPT-2 how can I help you? towards the use of pretrained language models for task-oriented dialogue systems. In Proceedings of the 3rd Workshop on Neural Generation and Translation.
- E. Dinan, V. Logacheva, and V. Malykh et al. 2020. The second conversational intelligence challenge (ConvAI2). In The NeurIPS '18 Competition.
- M. Huang, X. Zhu, and J. Gao. 2020. Challenges in building intelligent open-domain dialog systems. ACM Trans. Inf. Syst. 38(3).
- M. Komeili, K. Shuster, and J. Weston. 2021. Internet-augmented dialogue generation. arXiv:2107.07566.
- S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M. Smith, Y.-L. Boureau, and J. Weston. 2021. Recipes for building an open-domain chatbot. In EACL.
- Serban, R. Lowe, and P. Henderson et al. 2018. A survey of available corpora for building data-driven dialogue systems. Discourse & Dialogue 9(1):1–49.
- V. Serban, A. Sordoni, and Y. Bengio et al. 2016. Building end-to-end dialogue systems using generative hierarchical neural network models. In AAAI.
- O. Vinyals and Q. Le. 2015. A neural conversational model. arXiv:1506.05869.
- C.-S. Wu, S. C. Hoi, R. Socher, and C. Xiong. 2020. TOD-BERT: Pre-trained natural language understanding for task-oriented dialogue. In EMNLP.
- J. Xu, A. Szlam, and J. Weston. 2021. Beyond goldfish memory: Long-term open-domain conversation. arXiv:2107.07567.
- S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston. 2018. Personalizing dialogue agents: I have a dog. do you have pets too? arXiv:1801.07243.
- Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Cao, J. Liu, and B. Dolan. 2020. DIALOGPT: Large-scale generative pre-training for conversational response generation. In ACL.

