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Agenda for this meeting

18:00	 	 Introduction & announcements 

18:15	 	 Language modelling (Q&A) 

18:30	 	 Exercise on language modelling 

18:45	 	 Tokenisation and embeddings (Q&A) 

19:00	 	 Break 

19:15	 	 Bias in word representations 

19:30	 	 Transformer-based models (Q&A) 

19:45	 	 Outlook on Units 3–4



Introduction and announcements



Date Activity

2025-01-22 Meeting 1

2025-03-12 Meeting 2

2025-05-07 Meeting 3

2025-06-05 Last day to take the oral exam

2025-08-30 Additional examination 1

2026-01-09 Additional examination 2



“Route card”

https://forms.office.com/e/Kj7AfjCQCs

https://forms.office.com/e/Kj7AfjCQCs


Checking in (10 minutes)



Language modelling (Q&A)



Quiz 0.2, question 5



Formal definition of an n-gram model

𝑛	 	 	 the model’s order (1 = unigram, 2 = bigram, …) 

𝑉	 	 	 a finite set of possible words; the vocabulary 

𝑃(𝑤 |𝑢)	 a probability that specifies how likely it is to observe  
	 	 	 the word 𝑤 after the context (𝑛 − 1)-gram 𝑢 
	 	 	 one value for each combination of a word 𝑤 and a context 𝑢



Quiz 0.3, question 1



Limitations of statistical n-gram models

• Scaling to larger 𝑛-gram sizes is problematic, both for 
computational reasons and because of data sparsity. 

• Techniques for mitigating these issues require careful 
engineering and are not sufficiently flexible. 
smoothing, interpolation 

• Without additional effort, 𝑛-gram models are unable to share 
statistical strength across “similar” words. 
Observations of a red apple do not affect estimates for the yellow apples.

Goldberg § 9.3.2



Quiz 0.5, question 4



Gating mechanism

𝒈 𝒙𝑡𝒉𝑡−1 1−𝒈

ɺʄʄʌ
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����ɻʅʅʍ � ɺʄʄʌ

����ɻʅʅʍ ֛ ɺʄʄʌ
����ɻʅʅʍ � ɺʄʄʌ

����ɻʅʅʍ

<latexit sha1_base64="eL+/mAbnpKYpyfpO53CLyVtdox0="></latexit>

𝒉𝑡

The gating masks 𝒈 are learned values between 0 and 1.



Quiz 0.6, question 3



Training RNN language models

[BOS] live long

softmax

Linear

RNN RNN

LinearLinear

RNN

Embed Embed Embed

softmaxsoftmax

live long and

input  
sequence

input sequence,  
shifted by one position
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Exercise: Language modelling



A neural n-gram model

embedding  
vectors

feedforward 
network

softmax

Embed EmbedEmbed

relu

students opened their

books

Linear

concat

Linear



Graphical notation

add

mul

𝒙

𝑾

𝒃

𝒙

Linear

computation graph shorthand notation

red = trainable𝒛 𝒛



Linear layers

>>> import torch 

>>> # Create a linear model 
>>> model = torch.nn.Linear(784, 10) 

>>> # Inspect the shapes of the model parameters 
>>> [p.shape for p in model.parameters()] 
[torch.Size([10, 784]), torch.Size([10])] 

>>> # Feed random data and inspect the shape of the output 
>>> model.forward(torch.rand(784)).shape 
torch.Size([10])



Embedding layers

s2i = {'great': 0, 'monster': 1, 'movie': 2} 

import torch 

emb = torch.nn.Embedding(3, 2) 

emb(torch.tensor(s2i['monster'], dtype=torch.long)) 
# tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>) 

emb(torch.tensor([s2i[s] for s in s2i], dtype=torch.long)) 
tensor([[ 0.4503, -0.1549], 
        [ 0.6399,  0.1779], 
        [-0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)

number of words to embed

size of each embedding vector



A neural n-gram model

embedding  
vectors

feedforward 
network

softmax

Embed EmbedEmbed

relu

students opened their

books

Linear

concat

Linear

in_features = 300, 
out_features = 50

num_embeddings = 10,000, 
embedding_dim = 100

in_features = 50, 
out_features = 10,000



Tokenisation and embeddings (Q&A)



Quiz 1.2, question 4



Quiz 1.3, question 3



Quiz 1.6, question 1



<latexit sha1_base64="PAyO5GnZyTAZbNfWy3Dm+UhZWag="></latexit>৸	ਅ ] ਘ � ଔ
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The skip-gram model in detail (1)

• We maintain two separate vector representations: one for target 
words and one for context words. Initially, they are random. 

• The probability of a context word 𝑐 given a target word 𝑤 is 
defined using the softmax function:

vector representation  
for context words

vector representation  
for target words

all parameters  
of the model



Bias in word embeddings



Embedding bias and occupation participation

Our results demonstrate that word embeddings are a power-
ful lens through which we can systematically quantify common
stereotypes and other historical trends. Embeddings thus provide
an important quantitative metric which complements existing,
more qualitative, linguistic and sociological analyses of biases. In
Embedding Framework Overview and Validations, we validate that
embeddings accurately capture sociological trends by comparing
associations in the embeddings with census and other externally
verifiable data. In Quantifying Gender Stereotypes and Quantifying

Ethnic Stereotypes we apply the framework to quantify the change
in stereotypes of women, men, and ethnic minorities. We further
discuss our findings in Discussion and provide additional details
in Materials and Methods.

Embedding Framework Overview and Validations

In this section, we briefly describe our methods and data and
then validate our findings. We focus on showing that word
embeddings are an effective tool to study historical biases and
stereotypes by relating measurements from these embeddings
to historical census and survey data. The consistent replication
of such historical data, both in magnitude and in direction of
biases, validates the use of embeddings in such work. This section
extends the analysis of refs. 20 and 21 in showing that embed-
dings can also be used as a comparative tool over time as a
consistent metric for various biases.

Summary of Data and Methods. We now briefly describe our
datasets and methods, leaving details to Materials and Methods

and SI Appendix, section A. All of our code and embeddings
are available publicly⇤. For contemporary snapshot analysis, we
use the standard Google News word2vec vectors trained on the
Google News dataset (24, 25). For historical temporal analysis, we
use previously trained Google Books/Corpus of Historical Amer-
ican English (COHA) embeddings, which are a set of nine embed-
dings, each trained on a decade in the 1900s, using the COHA
and Google Books (26). As additional validation, we train, using
the GLoVe algorithm (27), embeddings from the New York Times

Annotated Corpus (28) for every year between 1988 and 2005. We
then collate several word lists to represent each gender† (men,
women) and ethnicity‡ (White, Asian, and Hispanic), as well as
neutral words (adjectives and occupations). For occupations, we
use historical US census data (29) to extract the percentage of
workers in each occupation that belong to each gender or ethnic
group and compare it to the bias in the embeddings.

Using the embeddings and word lists, one can measure the
strength of association (embedding bias) between neutral words
and a group. As an example, we overview the steps we use to quan-
tify the occupational embedding bias for women. We first com-
pute the average embedding distance between words that repre-
sent women—e.g., she, female—and words for occupations—e.g.,
teacher, lawyer. For comparison, we also compute the average
embedding distance between words that represent men and the
same occupation words. A natural metric for the embedding bias

⇤All of our own data and analysis tools are available on GitHub at https://github.com/
nikhgarg/EmbeddingDynamicStereotypes. Census data are available through the Inte-
grated Public Use Microdata Series (29). We link to the sources for each embedding
used in Materials and Methods.

†There is an increasingly recognized difference between sex and gender and thus
between the words male/female and man/woman, as well as nonbinary categories. We
limit our analysis to the two major binary categories due to technical limitations, and
we use male and female as part of the lists of words associated with men and women,
respectively, when measuring gender associations. We also use results from refs. 6 and
7 which study stereotypes associated with sex.

‡When we refer to Whites or Asians, we specifically mean the non-Hispanic subpopu-
lation. For each ethnicity, we generate a list of common last names among the group.
Unfortunately, our present methods do not extend to Blacks due to large overlaps in
common last names among Whites and Blacks in the United States.

is the average distance for women minus the average distance for
men. If this value is negative, then the embedding more closely
associates the occupations with men. More generally, we com-
pute the representative group vector by taking the average of the
vectors for each word in the given gender/ethnicity group. Then
we compute the average Euclidean distance between each repre-
sentative group vector and each vector in the neutral word list of
interest, which could be occupations or adjectives. The difference
of the average distances is our metric for bias—we call this the
relative norm difference or simply embedding bias.

We use ordinary least-squares regressions to measure asso-
ciations in our analysis. In this paper, we report r2 and the
coefficient P value for each regression, along with the intercept
confidence interval when relevant.

Validation of the Embedding Bias. To verify that the bias in the
embedding accurately reflects sociological trends, we compare
the trends in the embeddings with quantifiable demographic
trends in the occupation participation, as well as historical sur-
veys of stereotypes. First, we use women and minority ethnic
participation statistics (relative to men and Whites, respectively)
in different occupations as a benchmark because it is an objective
metric of social changes. We show that the embedding accu-
rately captures both gender and ethnic occupation percentages
and consistently reflects historical changes.

Next, we validate that the embeddings capture personality trait
stereotypes. A difficulty in social science is the relative dearth of
historical data to systematically quantify stereotypes, which high-
lights the value of our embedding framework as a quantitative
tool but also makes it challenging to directly confirm our findings
on adjectives. Nevertheless, we make use of the best available
data from historical surveys, gender stereotypes from 1977 and
1990 (6, 7) and ethnic stereotypes from the Princeton trilogy
from 1933, 1951, and 1969 (8–10).
Comparison with women’s occupation participation. We investi-
gate how the gender bias of occupations in the word embeddings
relates to the empirical percentage of women in each of these
occupations in the United States. Fig. 1 shows, for each occu-
pation, the relationship between the relative percentage (of
women) in the occupation in 2015 and the relative norm dis-
tance between words associated with women and men in the
Google News embeddings. (Occupations whose 2015 percent-
age is not available, such as midwife, are omitted. We further
note that the Google News embedding is trained on a corpus

Librarian

Secretary

Carpenter

Nurse

Engineer

Mechanic

Housekeeper

Dancer

Women Occupation % Difference

Fig. 1. Women’s occupation relative percentage vs. embedding bias in
Google News vectors. More positive indicates more associated with women
on both axes. P < 10�10, r2 = 0.499. The shaded region is the 95% boot-
strapped confidence interval of the regression line. In this single embedding,
then, the association in the embedding effectively captures the percentage
of women in an occupation.

E3636 | www.pnas.org/cgi/doi/10.1073/pnas.1720347115 Garg et al.
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Partner discussion

• Partner A: “The results of Garg et al. clearly show that word 
embeddings contain harmful biases. There is a risk that we build 
these biases into our models. We should therefore develop 
methods for de-biasing embeddings.” 

• Partner B: “The results of Garg et al. simply show statistical 
correlations in the data; I would not call them harmful biases. 
The results suggest that word embeddings make an interesting 
tool for data-driven research in the social sciences.”



Transformer-based models (Q&A)



Quiz 2.2, question 1



Quiz 2.2, question 6



Beam search example

<BOS>

just

drink

drink

simple

just

simply

greater

more

more

greater

coffee

tea

coffee

tea

− 0.1

− 0.7

− 0.2

− 0.9

− 0.9

− 1.5

− 1.1

− 1.8

− 0.4

− 0.2

− 0.2

− 0.5

− 0.1

− 0.4

− 0.5

− 0.3

− 0.7

− 0.6



Quiz 2.3, question 1



encoder

Trink einfach mehr Kaffee

Recency bias in recurrent neural networks

decoder

Sutskever et al. (2014)

Bi-RNN Bi-RNN Bi-RNN Bi-RNN

EmbedE EmbedE EmbedE EmbedE

https://papers.nips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf


Quiz 2.3, question 3



Attention for translation

𝒗

softmax

Score

Bi-RNNBi-RNNBi-RNN

Embed

einfachTrink Kaffee

Embed Embed

Score Score

𝒉1 𝒉2 𝒉3

𝒔 𝒔 𝒔

𝜶

öਊ ૓ਊ਽ਊ

<latexit sha1_base64="vysiEOG7Rg2yMytsUoA6p18jOc8="></latexit>

[𝒉1 ; 𝒉2 ; 𝒉3]

attention  
weights

previous  
hidden state  

of the decoder

Bahdanau et al. (2015)

Just drink coffee

https://arxiv.org/abs/1409.0473


Quiz 2.4, question 5



position encoding

softmax

Linear

6

FFN

MHA

MHA

+

EmbedEmbed

+
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512 512

512

512
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Quiz 2.5, question 2



GPT model architecture

Radford et al. (2018)

learned position embedding

Embed

+

context token

MHA

FNN

Linear

target token

softmax

12

masked 12-headed attention

inner hidden state with d = 3072

768

768

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf


Outlook on Units 3–4



Evaluation

Systems

Data

Training

Architecture

LLM



raw text from  
the Internet 
trillions of words 
low quality,  
high quantity

language  
modelling 
predict the  
next word

1000s of GPUs 
several months of 
training time 
GPT, Llama

ideal  
dialogues 
10k–100k 
low quantity,  
high quality

language  
modelling 
predict the  
next word

1–100 GPUs 
several days of 
training time 

annotated  
dialogues 
100k–1M 
low quantity,  
high quality

binary  
classification 
reward consistent 
with preferences?

1–100 GPUs 
several days of 
training time

data

algorithm

resources

unsupervised  
pre-training

instruction  
fine-tuning

reward  
modelling

reinforcement  
learning

language model assistant model

generated  
dialogues 
10k–100k 
low quantity,  
high quality

reinforcement 
learning 
generate text for 
maximal reward

1–100 GPUer 
several days of  
training time 
ChatGPT, Claude



The FineWeb pipeline

URL 
Filtering

Text 
Extraction

Language 
Filtering

Gopher 
Filtering

PII  
Removal

Custom  
Filtering

C4  
Filtering

MinHash 
Dedup

🔗 📄 ⚗🌐

⚗⚗🕵 👥

Penedo et al. (2024)

https://arxiv.org/abs/2406.17557


Large language models can be too large

Figure 1 | Overlaid predictions. We overlay the predictions from our three di�erent approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).

In this work, we revisit the question: Given a fixed FLOPs budget,1 how should one trade-o� model
size and the number of training tokens? To answer this question, we model the final pre-training loss2

!(#, ⇡) as a function of the number of model parameters #, and the number of training tokens, ⇡.
Since the computational budget ⇠ is a deterministic function FLOPs(#, ⇡) of the number of seen
training tokens and model parameters, we are interested in minimizing ! under the constraint
FLOPs(#, ⇡) = ⇠:

#=>B (⇠), ⇡=>B (⇠) = argmin
#,⇡ s.t. FLOPs(#,⇡)=⇠

!(#, ⇡). (1)

The functions #=>B (⇠), and ⇡=>B (⇠) describe the optimal allocation of a computational budget ⇠. We
empirically estimate these functions based on the losses of over 400 models, ranging from under 70M
to over 16B parameters, and trained on 5B to over 400B tokens – with each model configuration
trained for several di�erent training horizons. Our approach leads to considerably di�erent results
than that of Kaplan et al. (2020). We highlight our results in Figure 1 and how our approaches di�er
in Section 2.

Based on our estimated compute-optimal frontier, we predict that for the compute budget used
to train Gopher, an optimal model should be 4 times smaller, while being training on 4 times more
tokens. We verify this by training a more compute-optimal 70B model, called Chinchilla, on 1.4 trillion
tokens. Not only does Chinchilla outperform its much larger counterpart, Gopher, but its reduced
model size reduces inference cost considerably and greatly facilitates downstream uses on smaller
hardware. The energy cost of a large language model is amortized through its usage for inference an
fine-tuning. The benefits of a more optimally trained smaller model, therefore, extend beyond the
immediate benefits of its improved performance.

1For example, knowing the number of accelerators and a target training duration.
2For simplicity, we perform our analysis on the smoothed training loss which is an unbiased estimate of the test loss, as

we are in the infinite data regime (the number of training tokens is less than the number of tokens in the entire corpus).

2



Chain-of-thought prompting

Standard prompting 

Q: Roger has 5 tennis balls. He buys 2 more 
cans of tennis balls. Each can has 3 balls. How 
many tennis balls does he have now? 

A: The answer is 11. 
 

Q: The cafeteria had 23 apples. If they used 
20 to make lunch and bought 6 more, how 
many apples do they have? 

A: The answer is 11.

Chain-of-thought prompting 

Q: Roger has 5 tennis balls. He buys 2 more 
cans of tennis balls. Each can has 3 balls. How 
many tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 balls 
each is 6 balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 
20 to make lunch and bought 6 more, how 
many apples do they have? 

A: The cafeteria had 23 apples originally. 
They used 20 to make lunch. So they had 
23 – 20 = 3. They bought 6 more apples, so 
they had 3 + 6 = 9. The answer is 9.

Wei et al. (2022)

https://openreview.net/pdf?id=_VjQlMeSB_J

