Natural Language Processing

Meeting 2025-03-12

Marco Kuhlmann Department of Computer and Information Science

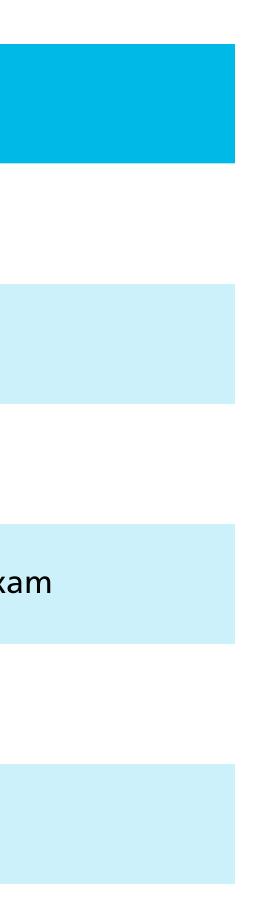
This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Agenda for this meeting

- 18:00 Introduction & announcements
- 18:15 Language modelling (Q&A)
- 18:30 Exercise on language modelling
- 18:45 Tokenisation and embeddings (Q&A)
- 19:00 Break
- 19:15 Bias in word representations
- 19:30 Transformer-based models (Q&A)
- 19:45 Outlook on Units 3–4

Introduction and announcements

Date	Activity
2025-01-22	Meeting 1
2025-03-12	Meeting 2
2025-05-07	Meeting 3
2025-06-05	Last day to take the oral exam
2025-08-30	Additional examination 1
2026-01-09	Additional examination 2



"Route card"

https://forms.office.com/e/Kj7AfjCQCs

Checking in (10 minutes)

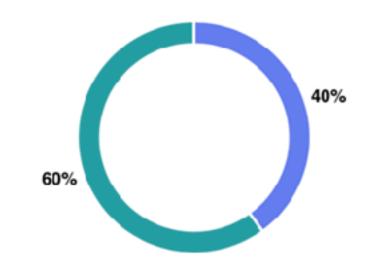
Language modelling (Q&A)

Quiz 0.2, question 5

5. What is the MLE-estimated probability of a word that is not in the model vocabulary? (1 point)

60% of respondents answered this question correctly.

0
 6
 1
 0
 not defined
 9



Formal definition of an n-gram model

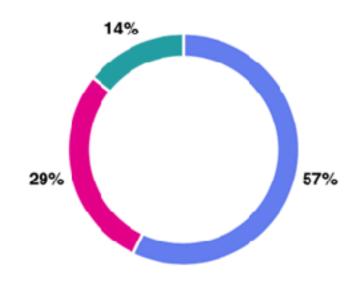
the model's order (1 = unigram, 2 = bigram, ...)N a finite set of possible words; the vocabulary VP(w|u)a probability that specifies how likely it is to observe the word *w* after the context (n - 1)-gram *u* one value for each combination of a word *w* and a context *u*

Quiz 0.3, question 1

1. What is meant by n-grams "sharing statistical strength"? (1 point)

57% of respondents answered this question correctly.

٠	n-grams with similar words have similar probabilities	8	\checkmark
•	frequent n-grams give some of their counts to rare n- grams	4	
•	n-grams containing unknown words receive probability from the remaining n-grams	2	



Limitations of statistical n-gram models

- Scaling to larger *n*-gram sizes is problematic, both for computational reasons and because of data sparsity.
- Techniques for mitigating these issues require careful engineering and are not sufficiently flexible. smoothing, interpolation
- Without additional effort, *n*-gram models are unable to share statistical strength across "similar" words.

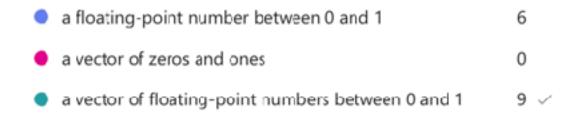
Observations of *a red apple* do not affect estimates for *the yellow apples*.

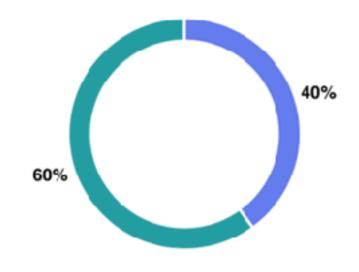
Goldberg § 9.3.2

Quiz 0.5, question 4

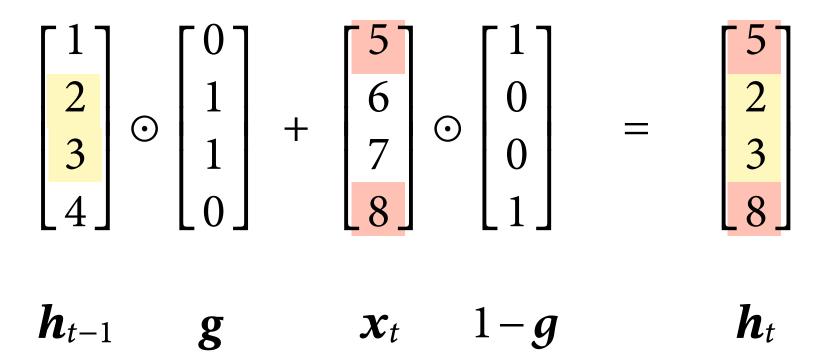
4. In the LSTM architecture, what is the output of the forget gate? (1 point)

60% of respondents answered this question correctly.





Gating mechanism



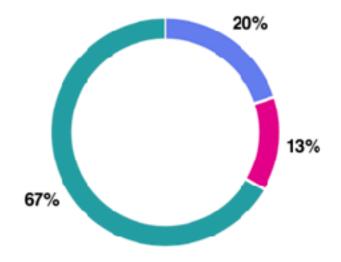
The gating masks \mathbf{g} are learned values between 0 and 1.

Quiz 0.6, question 3

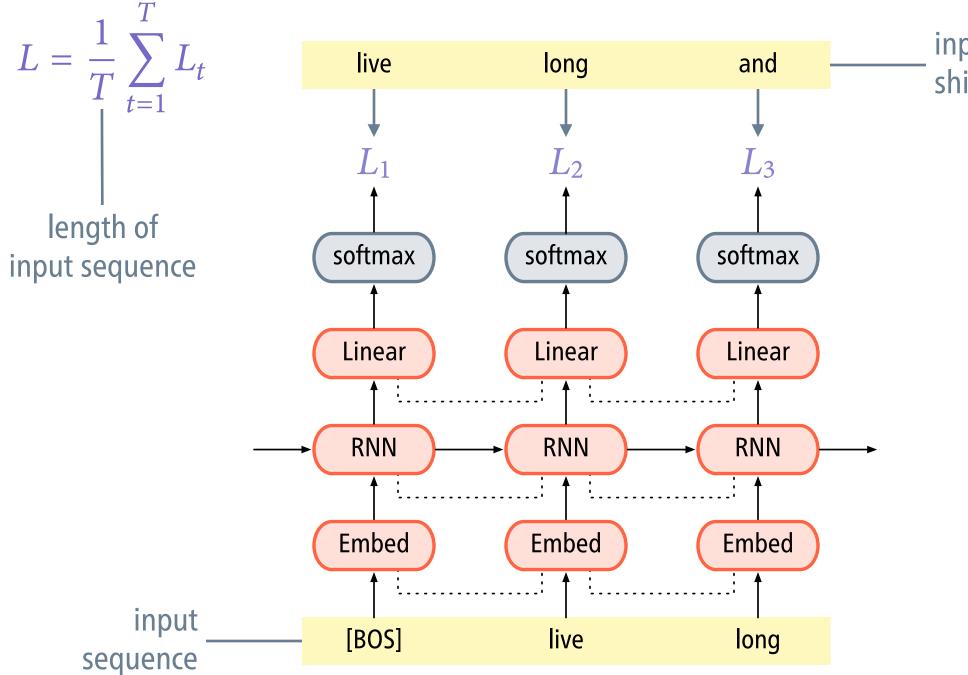
3. When training RNN language models, how would we expect the training loss to change when we double the backpropagation-th rough-time horizon? (1 point)

67% of respondents answered this question correctly.

- It should double 3 2 It should half
- It should not change 10 🗸



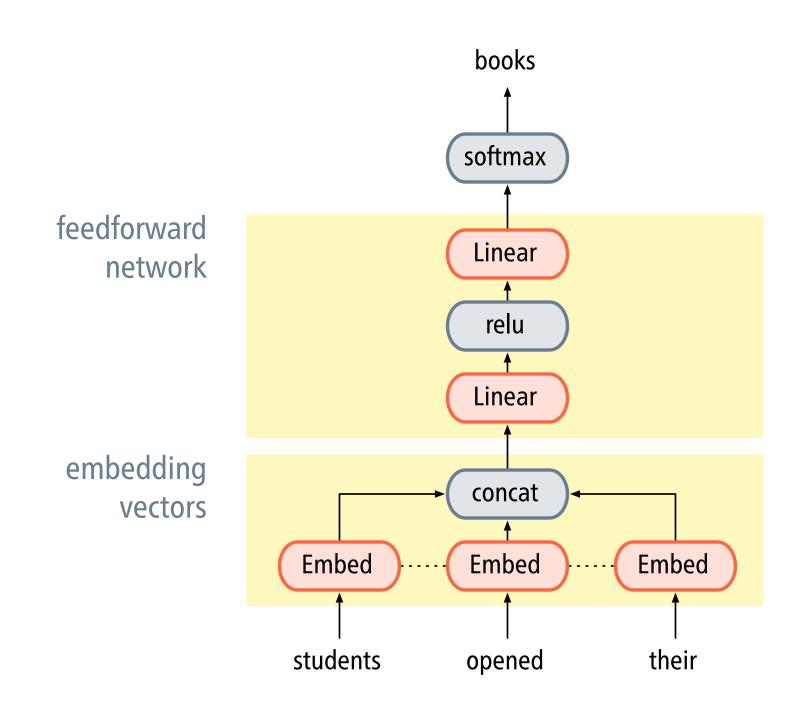
Training RNN language models



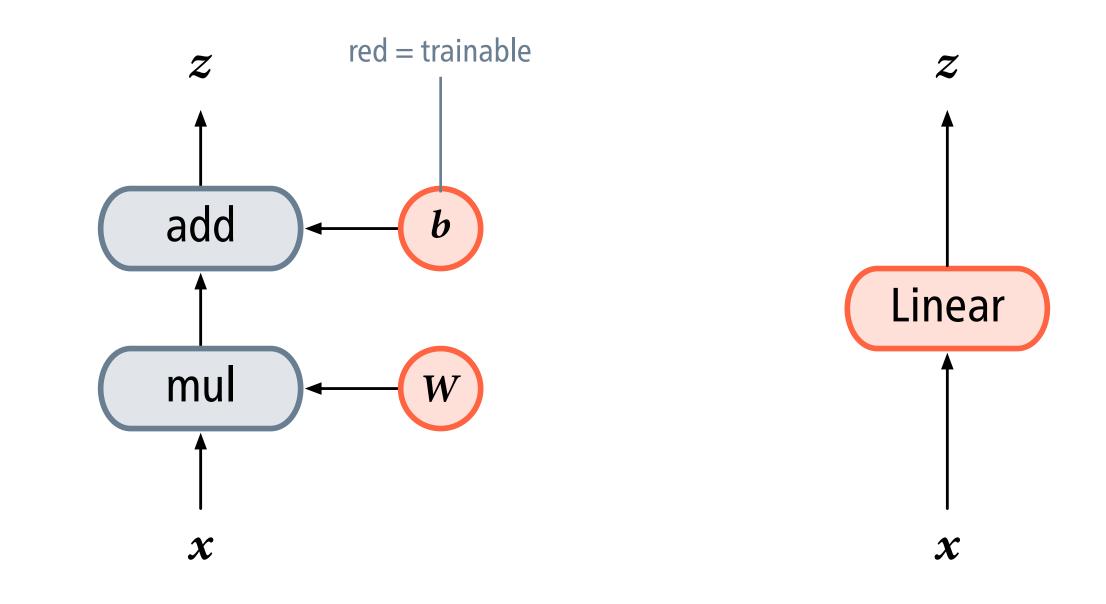
input sequence, shifted by one position

Exercise: Language modelling

A neural n-gram model



Graphical notation



shorthand notation

computation graph

Linear layers

>>> import torch

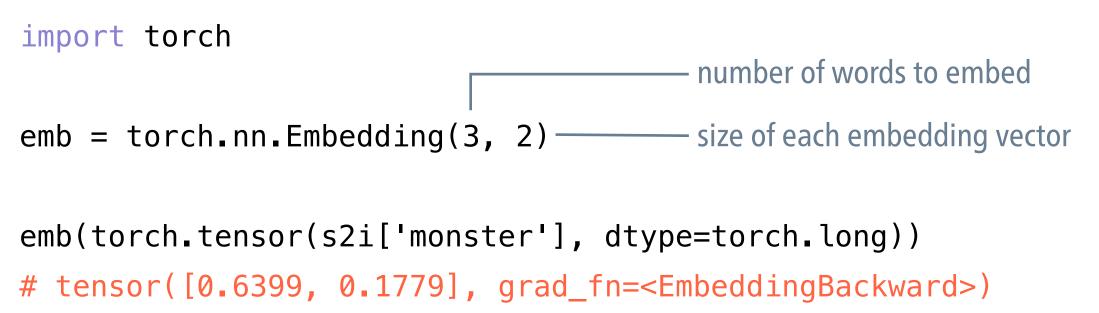
>>> # Create a linear model >>> model = torch.nn.Linear(784, 10)

```
>>> # Inspect the shapes of the model parameters
>>> [p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]
```

>>> # Feed random data and inspect the shape of the output >>> model.forward(torch.rand(784)).shape torch.Size([10])

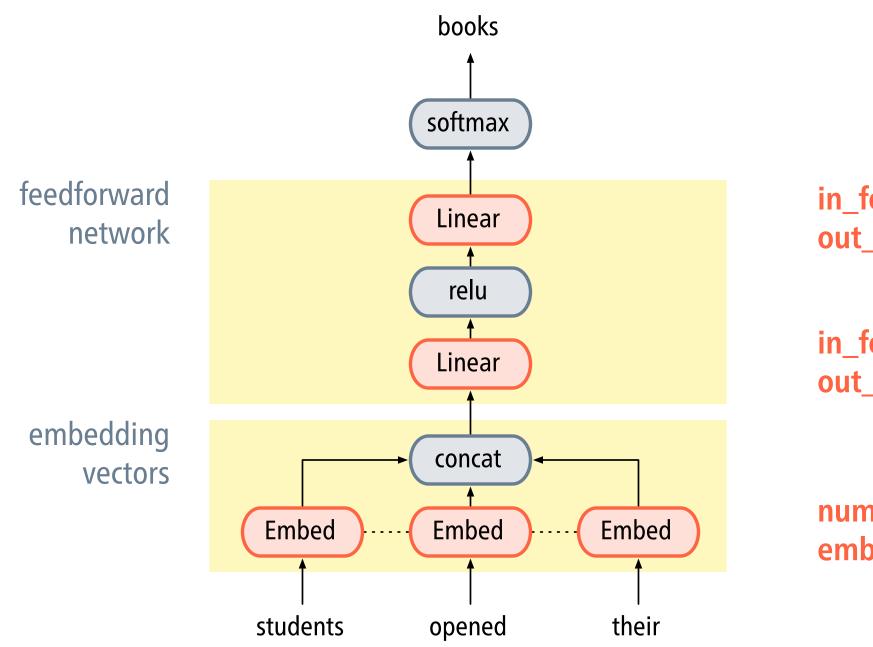
Embedding layers

s2i = {'great': 0, 'monster': 1, 'movie': 2}



```
emb(torch.tensor([s2i[s] for s in s2i], dtype=torch.long))
tensor([[ 0.4503, -0.1549],
      [ 0.6399, 0.1779],
      [-0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)
```

A neural n-gram model



num_embeddings = 10,000, embedding_dim = 100

in_features = 300,
out_features = 50

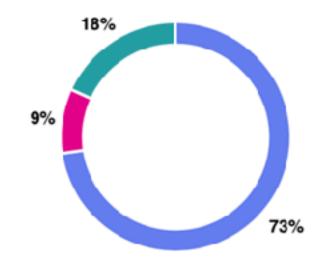
in_features = 50,
out_features = 10,000

Tokenisation and embeddings (Q&A)

Quiz 1.2, question 4

4. Suppose we apply the BPE algorithm to a very long English text and do a lot of merge rules. Which token would be expect not to see in our final vocabulary? (1 point)

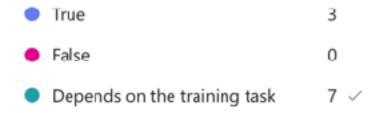
73% of respondents answered this question correctly.

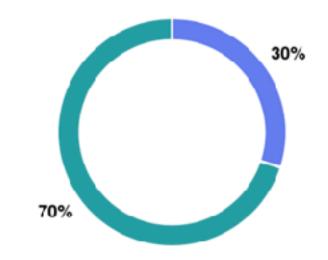


Quiz 1.3, question 3

3. True or false? "The embeddings learned for the words university and school are similar." (1 point)

70% of respondents answered this question correctly.

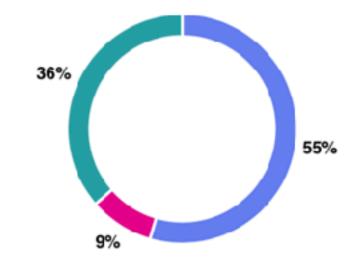




Quiz 1.6, question 1

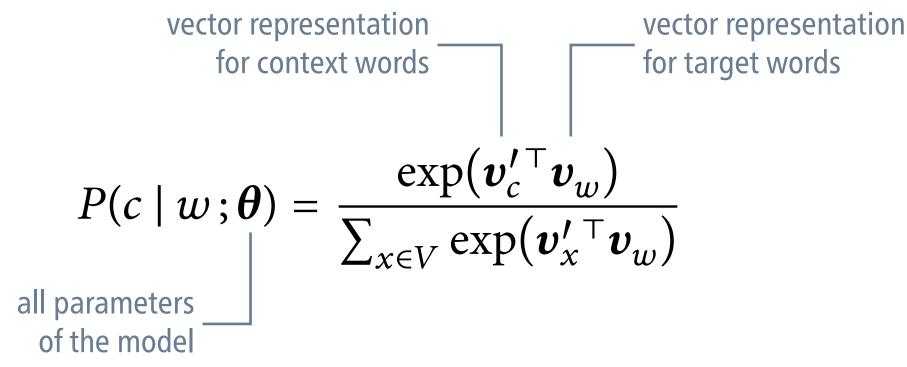
1. The standard skip-gram model (without negative sampling) is a k-class classification problem. What would be a realistic value for k? (1 point)

36% of respondents answered this question correctly.



The skip-gram model in detail (1)

- We maintain two separate vector representations: one for target words and one for context words. Initially, they are random.
- The probability of a context word *c* given a target word *w* is defined using the softmax function:



Bias in word embeddings

Embedding bias and occupation participation

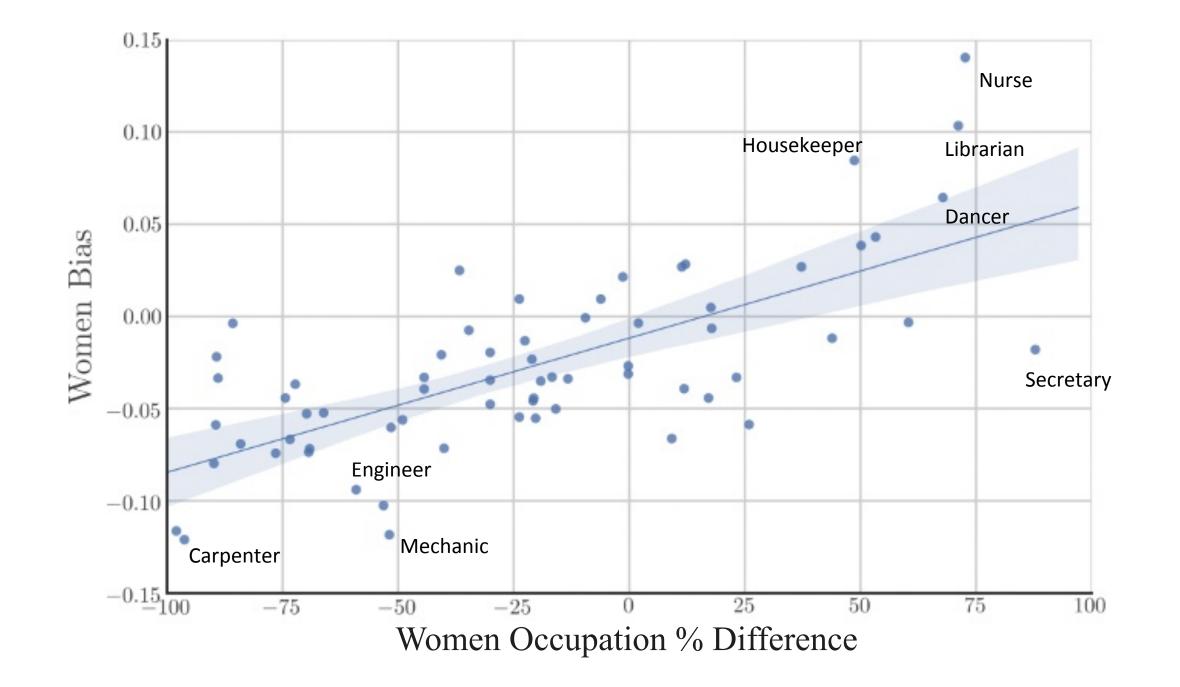


Figure 1 from Garg et al. (2018)

Vem styr debatten om migrationen?

20 november 2018

Mikael Sönne

Hur har det offentliga samtalet om invandring förändrats i Sverige? Och vem ligger bakom den förändringen - politikerna, medierna eller allmänheten i sociala medier? Det ska ett nytt forskningsprojekt vid LiU försöka ta reda på.

"Att kunna analysera fritt skriven text frigör forskningen", säger Marc Keuschnigg. B ild: Mikael Sönne

Partner discussion

- **Partner A:** "The results of Garg et al. clearly show that word embeddings contain harmful biases. There is a risk that we build these biases into our models. We should therefore develop methods for de-biasing embeddings."
- **Partner B:** "The results of Garg et al. simply show statistical correlations in the data; I would not call them harmful biases. The results suggest that word embeddings make an interesting tool for data-driven research in the social sciences."

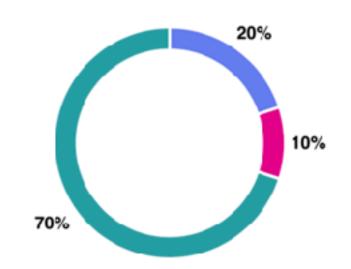
Transformer-based models (Q&A)

Quiz 2.2, question 1

1. Which of the following tasks do <u>not</u> usually lend themselves to the use of autoregressive language models? (1 point)

70% of respondents answered this question correctly.

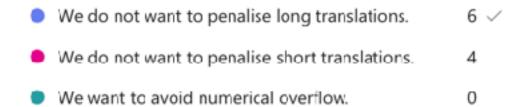
- machine translation 2
- text summarisation 1
- document classification 7 🗸

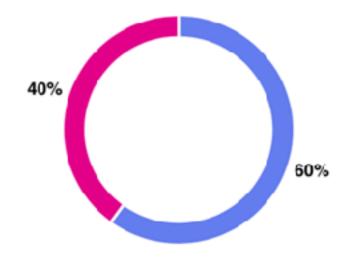


Quiz 2.2, question 6

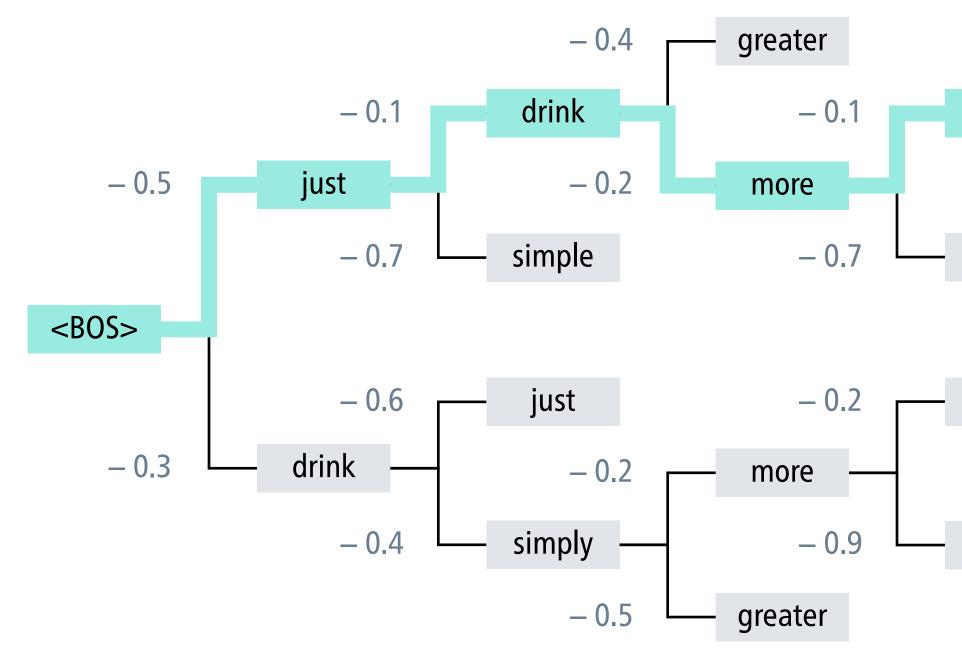
5. Why do we use length normalisation together with beam search in decoding? (1 point)

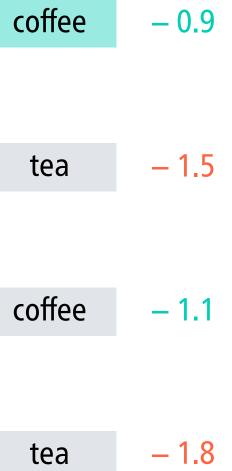
60% of respondents answered this question correctly.





Beam search example





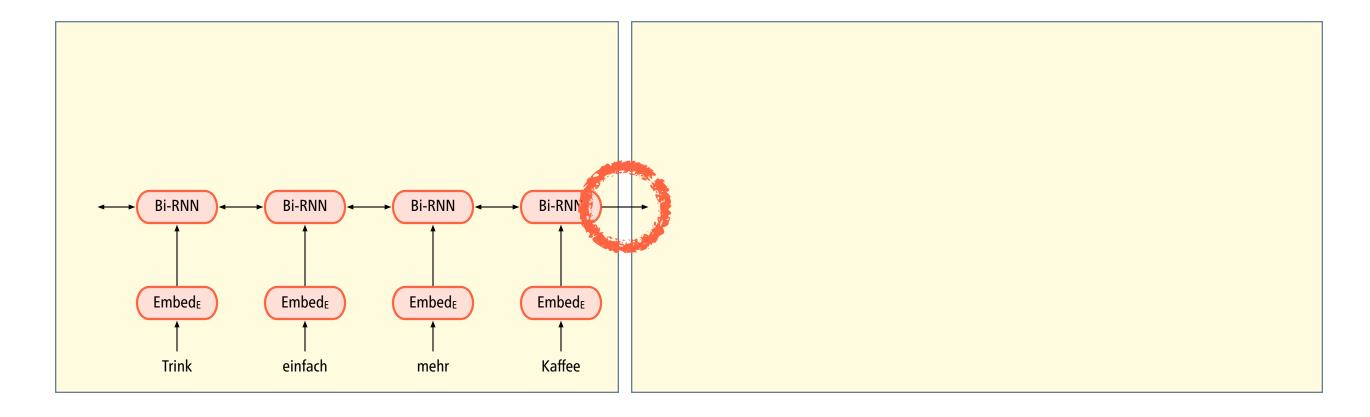
Quiz 2.3, question 1

1. Suppose we encode the sentence "Gold is heavier than silver" using a bi-directional recurrent neural network. What issue does the e recency bias cause? (1 point)

10% of respondents answered this question correctly.

The final hidden state contains more information 1 🗸 about Gold than about heavier. The final hidden state contains more information 0 about Gold than about silver. The final hidden state contains more information about *silver* than about *Gold*. 9

Recency bias in recurrent neural networks



encoder

decoder

Sutskever et al. (2014)

Quiz 2.3, question 3

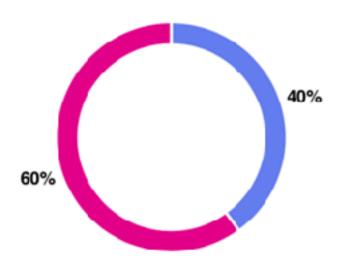
3. Consider following values for the example in slide 6 ff.:

s = [0.4685, 0.9785], h1 = [0.5539, 0.7239], h2 = [0.4111, 0.3878], h3 = [0.2376, 0.1264]

Assuming that the attention score is computed using the dot product, what is v? (1 point)

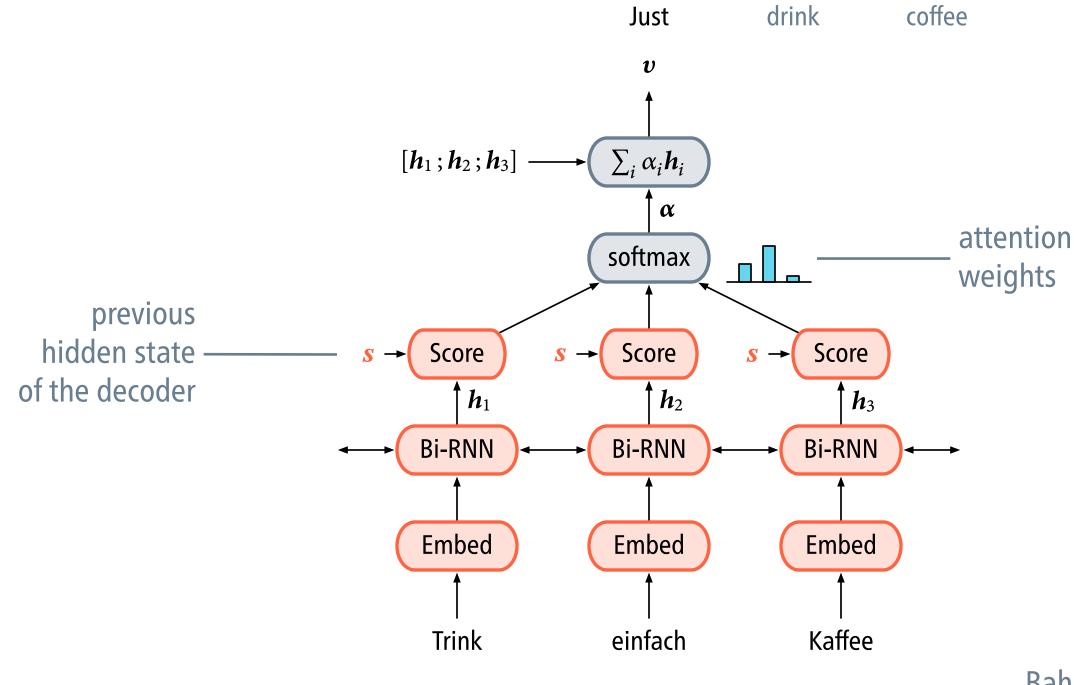
40% of respondents answered this question correctly.

- [0.9678, 0.5721, 0.2350]
- 0 [0.4643, 0.3126, 0.2231] 0



More details

Attention for translation

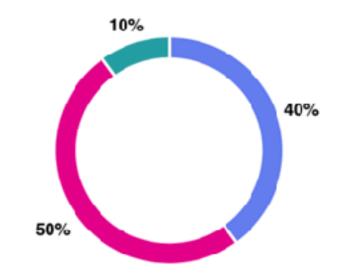


Bahdanau et al. (2015)

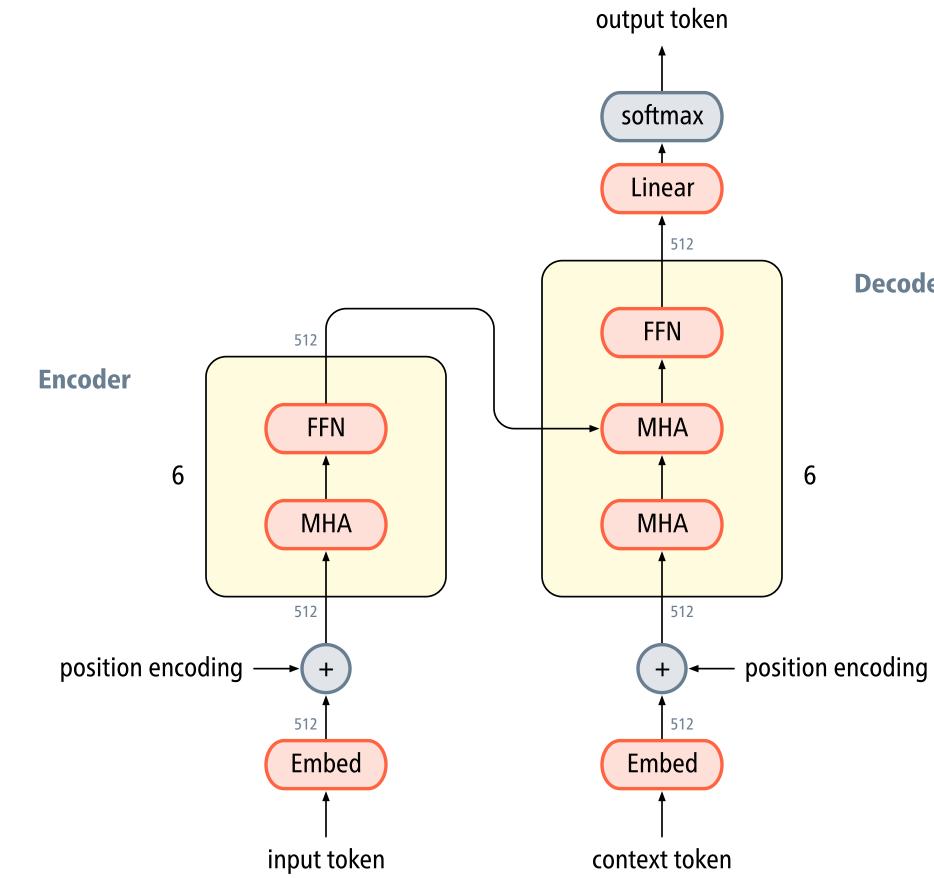
Quiz 2.4, question 5

5. True or false: Permuting the input tokens to a Transformer encoder does not change the final token representations. (1 point)

50% of respondents answered this question correctly.



More details



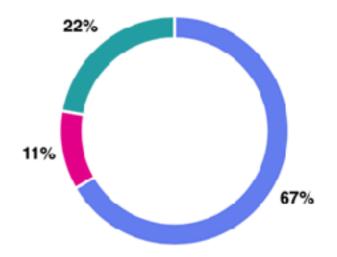
Decoder

Quiz 2.5, question 2

2. Looking at the original GPT model architecture (Radford et al., 2018), what is the approximate number of trainable parameters in the FNN? (1 point)

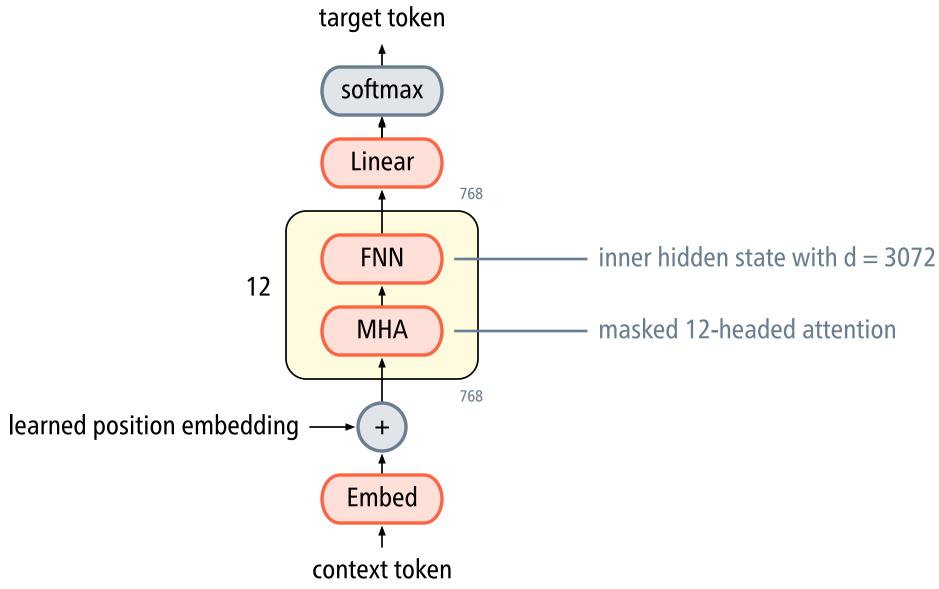
67% of respondents answered this question correctly.

9216 2



More details

GPT model architecture



Radford et al. (2018)

Outlook on Units 3–4

	unsupervised pre-training	instruction fine-tuning	reward modelling
data	raw text from the Internet trillions of words	ideal dialogues 10k–100k	annotated dialogues 100k–1M
	low quality, high quantity	low quantity, high quality	low quantity, high quality
algorithm	language modelling predict the next word	language modelling predict the next word	binary classification reward consistent with preferences?
resources	1000s of GPUs several months of training time GPT, Llama	1–100 GPUs several days of training time	1–100 GPUs several days of training time
	language mod	el ———	

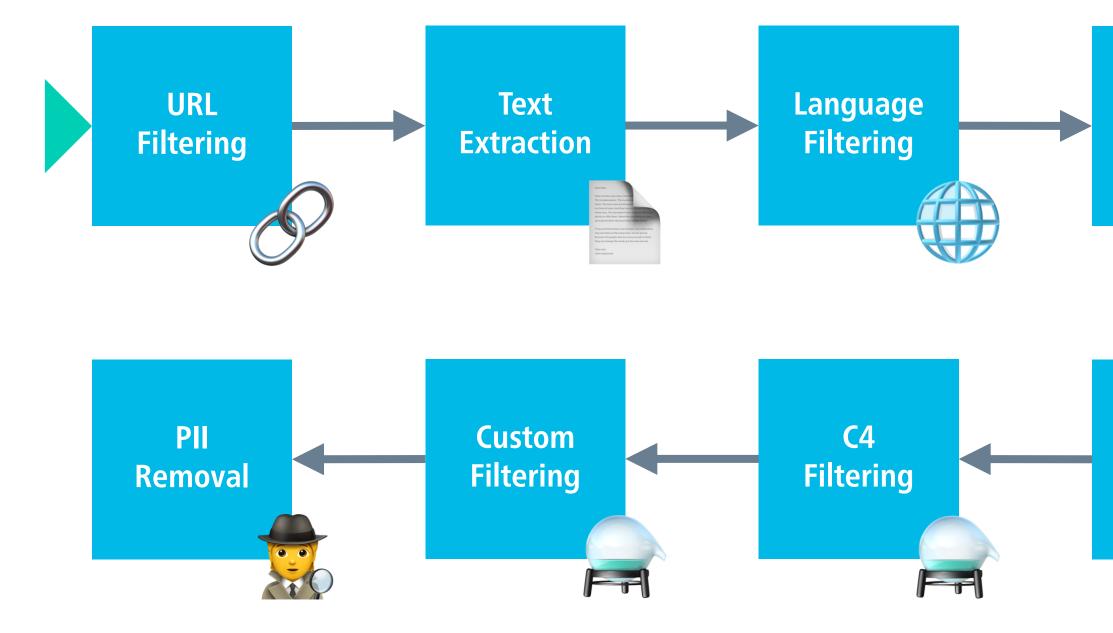
reinforcement learning

generated dialogues 10k–100k low quantity, high quality

reinforcement learning generate text for maximal reward

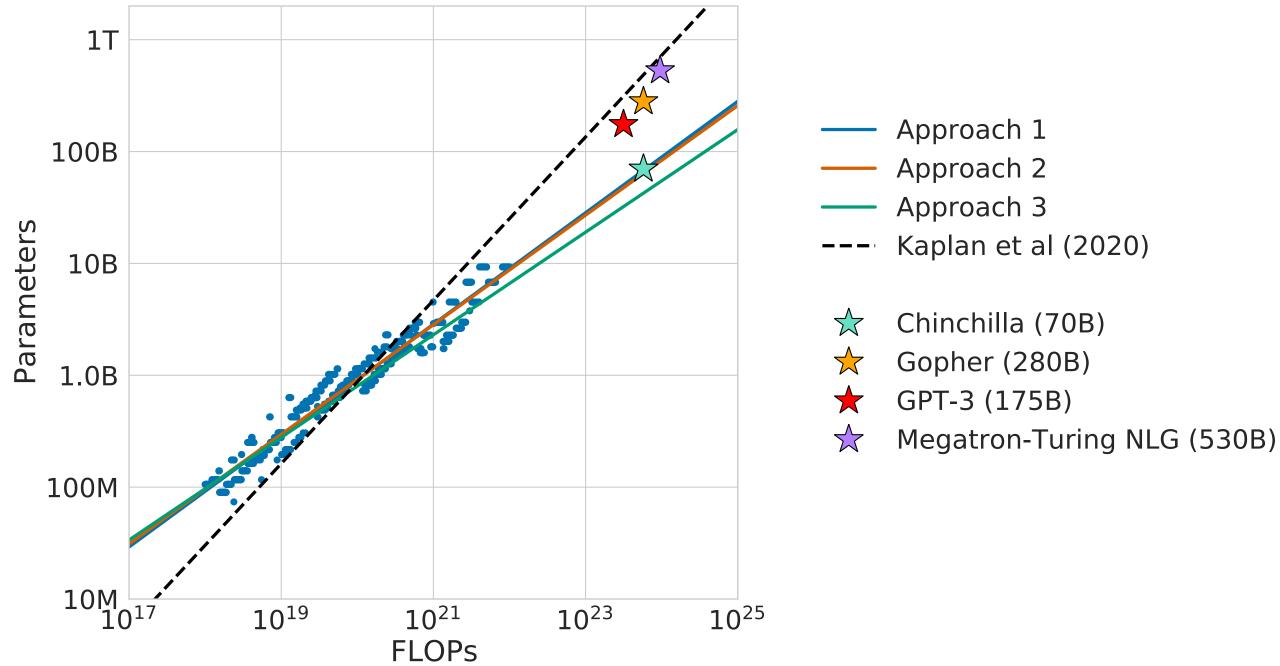
1–100 GPUer several days of training time ChatGPT, Claude

The FineWeb pipeline



Penedo et al. (2024)

Large language models can be too large



Chain-of-thought prompting

Standard prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 11.

Chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 balls each is 6 balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they had 3 + 6 = 9. The answer is 9.

Wei et al. (2022)