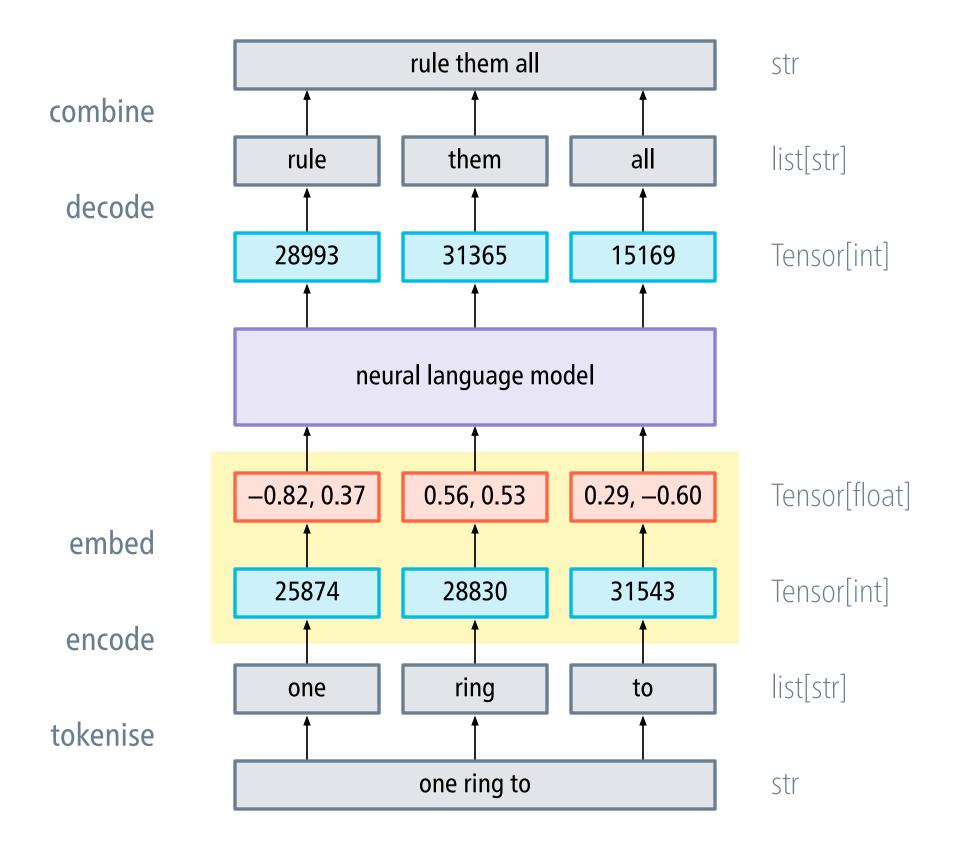
Natural Language Processing

Introduction to embeddings

Marco Kuhlmann

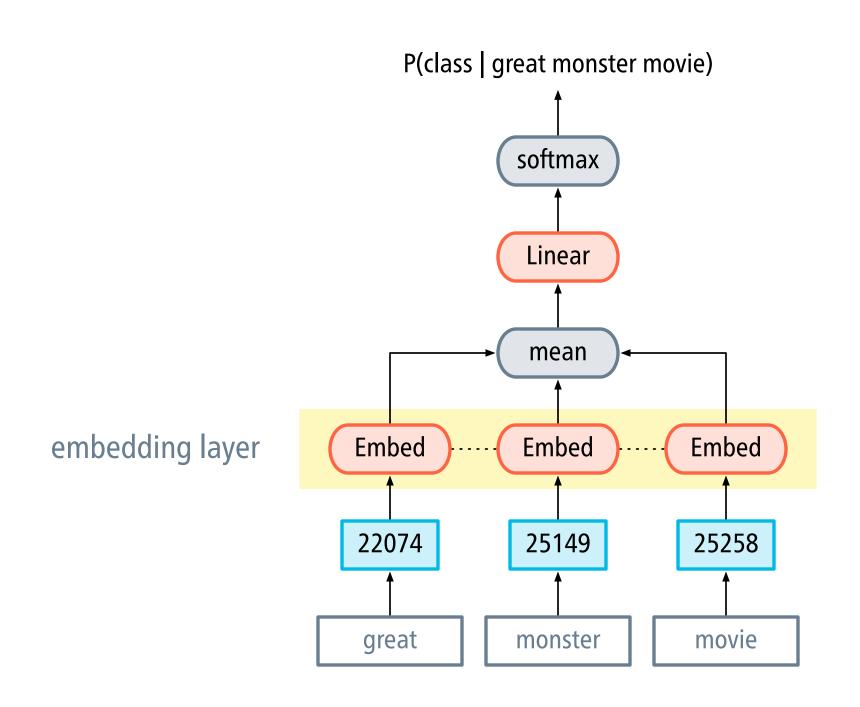
Department of Computer and Information Science



Embedding layers

- After each token has been encoded as an integer, it is sent through an **embedding layer**.
- The embedding layer assigns each token a fixed-size vector of floating-point numbers.
- Initially, these numbers are random, but we will tune them when training the embedding layer.

Bag-of-words classifier



Embedding layers in PyTorch

```
s2i = {'great': 0, 'monster': 1, 'movie': 2}
import torch
                                     — number of words to embed
emb = torch.nn.Embedding(3, 2) ———— size of each embedding vector
emb(torch.tensor(s2i['monster'], dtype=torch.long))
# tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>)
emb(torch.tensor([s2i[s] for s in s2i], dtype=torch.long))
tensor([[ 0.4503, -0.1549],
        [0.6399, 0.1779],
        [-0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)
```

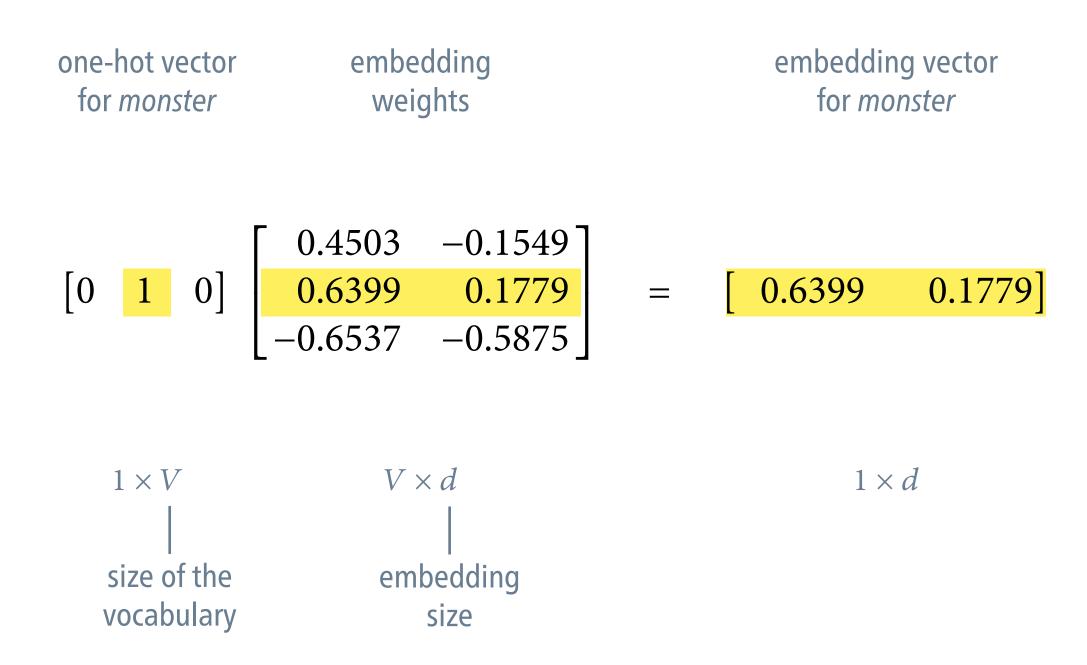
Implementation of the bag-of-words classifier

```
class Classifier(nn.Module):

    def __init__(self, num_embeddings, embedding_dim, num_classes):
        super().__init__()
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.linear = nn.Linear(embedding_dim, num_classes)

def forward(self, x):
    # x is a tensor containing token IDs
    return self.linear(self.embedding(x).mean(dim=-2))
```

Embedding layers as linear layers



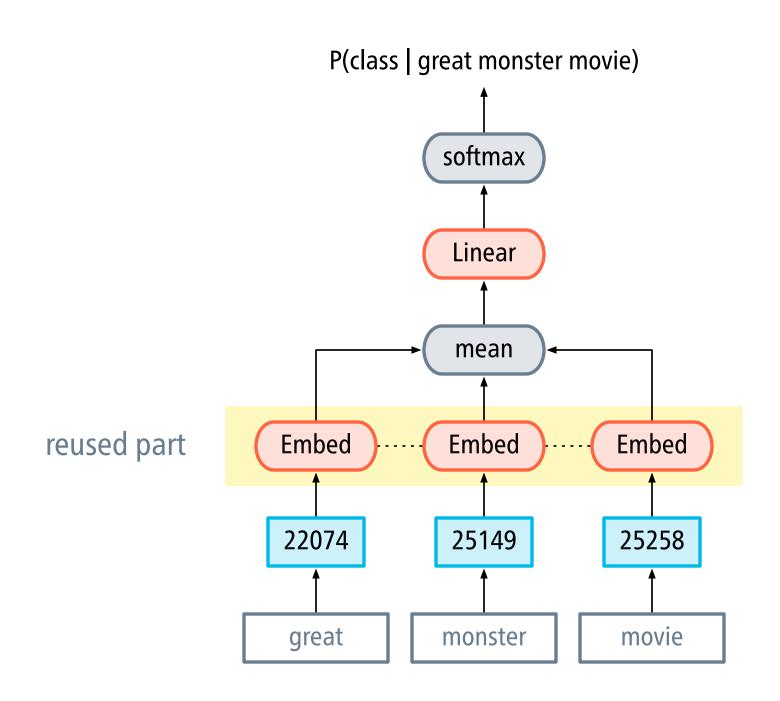
Trained embeddings are task-specific

- Initially, the embedding vectors are filled with random values. In PyTorch, these values come from the standard normal distribution.
- During training, backpropagation optimises the embedding vectors for the task at hand.
- After training, embedding vectors for which the network produces similar outputs will be similar to each other.
 - as measured, for example, by cosine similarity

Embeddings for transfer learning

- **Transfer learning** aims to re-use knowledge gained while solving some previous task when solving the next task.
 - speed up training, reduce the need for training data
- In the context of deep learning, transfer learning is typically implemented by re-using some part of a trained model.
- In particular, we could try re-using the embedding layers, instead
 of learning embeddings from scratch for each task.

Bag-of-words classifier



Re-using pre-trained embeddings

Pre-train embeddings on task *A* and use them to initialise the embedding layers of the network for task *B*. Then:

- Alternative 1: Train as usual, effectively fine-tuning the pretrained embeddings to the task at hand.
- **Alternative 2:** Freeze the weights of the embedding layers, to prevent the pre-trained embeddings from being modified.

What pre-training tasks should we use?

- We want to learn representations that are generally useful, so we prefer pre-training tasks that are general.
- We need to find training data for the pre-training tasks,
 so we prefer tasks for which data is abundant.

ideal candidate: raw text

This makes language modelling an attractive pre-training task.