Natural Language Processing

Introduction to embeddings

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

combine

decode

embed

encode

tokenise

rule them all

A

rule them all
28993 31365 15169
neural language model
—0.82,0.37 0.56, 0.53 0.29, -0.60
25874 28830 31543
one ring to

A

A

one ring to

Str

list[str]

Tensorlint]

Tensor|float]

Tensorlint]

list[str]

Str

Embedding layers

» After each token has been encoded as an integer, it is sent
through an embedding layer.

» The embedding layer assigns each token a fixed-size vector of
floating-point numbers.

o Initially, these numbers are random, but we will tune them when

training the embedding layer.

embedding layer

Bag-of-words classifier

P(class | great monster movie)

|
(softmax)

(Linear)

=(mean)=
(Embed)(Embed)(Embed)
22074 25149 25258

great monster movie

Embedding layers in PyTorch

s2i = {'great': 0, 'monster': 1, 'movie': 2}

import torch

| number of words to embed

emb = torch.nn.Embedding(3, 2) size of each embedding vector

emb(torch.tensor(s2il'monster'], dtype=torch.long))
tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>)

emb(torch.tensor([s2i[s] for s in s2i], dtype=torch.long))
tensor([[0.4503, -0.1549],
[0.6399, 0.1779],
-0.6537, -0.5875]1, grad_fn=<EmbeddingBackward>)

Implementation of the bag-of-words classifier

(nn.Module):

(, hum_embeddings, embedding _dim, num_classes):
(). init_ ()
.embedding = nn.Embedding(num_embeddings, embedding_dim)

. lLinear = nn.Linear(embedding_dim, num_classes)
(’ X):

. Linear(.embedding(x).mean(dim=-2))

Embedding layers as linear layers

one-hot vector embedding embedding vector
for monster weights for monster

" 0.4503 —0.1549°
0 1 0] | 06399 01779 = [0.6399 0.1779]
| —0.6537 —0.5875

1 xV V xd 1 xd

size of the embedding
vocabulary size

Trained embeddings are task-specific

Initially, the embedding vectors are filled with random values.

In PyTorch, these values come from the standard normal distribution.

During training, backpropagation optimises the embedding
vectors for the task at hand.

After training, embedding vectors for which the network
produces similar outputs will be similar to each other.

as measured, for example, by cosine similarity

Embeddings for transfer learning

» Transfer learning aims to re-use knowledge gained while solving

some previous task when solving the next task.

speed up training, reduce the need for training data

 In the context of deep learning, transfer learning is typically
implemented by re-using some part of a trained model.

» In particular, we could try re-using the embedding layers, instead
of learning embeddings from scratch for each task.

reused part

Bag-of-words classifier

P(class | great monster movie)

|
(softmax)

(Linear)

=(mean)=
(Embed)(Embed)(Embed)
22074 25149 25258

great monster movie

Re-using pre-trained embeddings

Pre-train embeddings on task A and use them to initialise the

embedding layers of the network for task B. Then:

» Alternative 1: Train as usual, eftectively fine-tuning the pre-
trained embeddings to the task at hand.

» Alternative 2: Freeze the weights of the embedding layers,
to prevent the pre-trained embeddings from being modified.

What pre-training tasks should we use?

- We want to learn representations that are generally useful,
so we prefer pre-training tasks that are general.

» We need to find training data for the pre-training tasks,

so we prefer tasks for which data is abundant.

ideal candidate: raw text

o This makes language modelling an attractive pre-training task.

