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The skip-gram model

Eisenstein § 14.5.2

» 'The skip-gram model is one of two word embedding models

implemented in Google’s word2vec software.

» In the context of this model, a skip-gram is a pair of words from

a text that are separated by at most k other words.

» 'The word embeddings are obtained as a by-product of the task

to predict one word in the s!

Kip-gram from the other word.

Mikolov et al. (2013)
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Training the skip-gram model

» Start with random word vectors.

» Move a small, symmetric window over the words in a text. Each

window contains a target word w and context words c.

 For each window, use the similarity of the current word vectors

for w and c to define a conditional probability P(c|w).

» Tweak the word vectors to maximise this probability.

Mikolov et al. (2013)
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Training the skip-gram model
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The skip-gram model in detail (1)

- We maintain two separate vector representations: one for target

words and one for context words. Initially, they are random.

 'The probability of a context word ¢ given a target word w is
defined using the softmax function:
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The skip-gram model in detail (2)

To maximise the conditional probabilities, we minimise the cross-
entropy loss on the training data:
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Computational complexity Fisenstein § 14.5.3

Computing the softmax is expensive: For each position in the text,

we need to sum over the complete vocabulary.

» Solution 1: Decompose the standard softmax computation into

a tree-like structure of simpler computations.

hierarchical softmax

» Solution 2: Instead of maximising the conditional probabilities

directly, maximise simpler quantities that approximate them.

negative sampling



Skip-gram with negative sampling Fisenstein § 14.5.3

- Maximise the probability of observed word-context pairs, while
minimising the probability of randomly drawn samples.
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» 'The negative samples are drawn from D(c) o< #(c)*, where a is a
hyperparameter (default value: 0.75).



Skip-gram with negative sampling in detail

» Subsampling: To reduce the influence of very frequent words
(and speed up learning), discard a token w with probability

P(w) = max(o, 1 — \/tN/#(w))_ count of the

word w

where t is a chosen threshold (default value: 0.001).

« Do not use a constant window size; instead, sample window sizes

up to the maximum size m with uniform probability.

As a consequence, far-away context words will get less influence.



The SGNS model as a neural network

P(real? | c,w)

|

( logistic ) logistic function
Y
_/
vector representation vector representation
Embed Embed
for context words ( e 1) ( e 2) for target words

| |

C w



