Natural Language Processing

Neural machine translation

Marco Kuhlmann

Department of Computer and Information Science

Neural Machine Translation (NMT)

- Neural machine translation (NMT) models the translation task through a single artificial neural network.
- The first systems for NMT were based on recurrent neural networks; more recent systems typically use Transformers.
- Many practical implementations are based on the OpenNMT ecosystem for neural machine translation.

Link to OpenNMT

Limitations of statistical machine translation

- Scaling to larger model sizes is problematic, both for computational reasons and because of data sparsity.
- State-of-the-art SMT systems used complex architectures with many components and required extensive tuning.
- Like *n*-gram models, statistical machine translation models are unable to share statistical strength across "similar" translations.

The sequence-to-sequence model (seq2seq)

The sequence-to-sequence model consists of two components:

• The **encoder** is a neural network that produces a representation of the source sentence.

typically implemented as a bidirectional recurrent neural network

• The **decoder** is an autoregressive language model that generates the target sentence, conditioned on the output of the encoder.

autoregressive = takes its own outputs as new inputs

encoder decoder

encoder decoder

encoder decoder

encoder

decoder

encoder

decoder

Properties of the seq2seq model

- The seq2seq model directly learns and uses P(y|x), rather than decomposing it into P(x|y) and P(y) as in SMT.
- The model can be trained trained end-to-end using backpropagation, without alignments or auxiliary models.
 only needs parallel data
- The seq2seq model is useful for a range of other tasks, including text summarisation, dialogue, and code generation.

Training an encoder—decoder model

Training an encoder-decoder model

Decoding algorithms

Greedy decoding

At each step, predict the highest-probability word. Stop when the end-of-sentence marker is predicted.

Beam search

Keep a limited number of highest-scoring partial translations. Expand the current beam, score the new translations, and prune.

Typical beam widths are between 2 and 16.

Termination criteria

- When the expansion of a partial translation generates the (EOS) marker, we have a complete translation.
- End the search after a fixed number of steps, or when enough complete translations have been generated.
- Evaluate the translations found during search based on their length-normalised scores and return the highest-scoring one.

different from standard beam search