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BERT

» 'The acronym BERT stands for “Bidirectional Encoder

Representations from Transformers”

« Asan encoder, BERT can learn token representations that are
conditioned on the complete input sequence.
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Model statistics

base large

number of dimensions 768 1024
number of encoder blocks 12 24
number of attention heads 12 16
number of parameters 110 M 340 M

Devlin et al. (2019)
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Pre-training tasks

* Masked Language Modelling (MLM)

Tokens are masked out at random. The model is trained to

predict the masked-out tokens.

* Next Sentence Prediction (NSP)

The model is trained to predict whether two randomly sampled

sentences are adjacent in the training data.
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Fine-tuning on a single-sentence classification task
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Fine-tuning on a sentence-pair classification task
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Fine-tuning on a sentence-pair similarity task
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Performance on the GLUE benchmark

GLUE

ELMo + Attention 71.0
Previous state-of-the-art 74.0
BERT (base) 79.6
BERT (large) 82.1

GLUE test results, scored by the evaluation server | Devlin et al. (2019)
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BERT-like models

« RoBERTa uses an improved recipe for pre-training and a
significantly larger data set.

Liu et al. (2019)

» ALBERT and DistilBERT are models with reduced training time

and model size, respectively.

Lan et al. (2019), Sanh et al. (2019)

» Many pre-trained BERT-like and other transformer models are

available via Hugging Face.
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ELECTRA: Pre-training via replaced token detection
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GLUE Score

Figure 1: Replaced token detection pre-training consistently outperforms masked language model
pre-training given the same compute budget. The left figure 1s a zoomed-in view of the dashed box.
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