Natural Language Processing

Training LLMs

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Gradient descent

» Step o: Start with random values for the parameters 0.

» Step 1: Compute the gradient of the loss function for the current
parameter settings, VL(0).

» Step 2: Update the parameters 0 as follows: 6:=0 — a VL(0)

The hyperparameter « is the learning rate.

» Repeat step 1—2 until the loss is sufficiently low.

Gradient descent

low loss

high loss

Stochastic gradient descent

low loss

high loss

Unstable training

Training deep neural networks is often unstable in the initial phase:

Parameters are initialised randomly, which means they are far

from the optimal solution.

Gradients are computed using relatively small subsets of the data,

which causes a large variability between grac

ients.

Adam optimiser

» Adam (Adaptive Moment Estimation) is the most popular
optimisation algorithm for training language models.

» Adam smoothes out gradient estimates by averaging past

gradient directions and magnitudes.

It maintains different learning rates per parameter, which helps it
adapt to different regions of the optimisation surface.

steps along the valley, steps across the valley

Gradient clipping

» Excessively large gradients can cause gradient explosion and
training instability.

» Gradient clipping stabilises the training process by downscaling
gradients if they exceed a certain limit.

» Specifically, gradient clipping will rescale gradients if their total
norm exceeds the specified threshold.

max_norm

scaling factor =
max(total norm, max_norm)

Learning rate scheduling

» Choosing the right learning rate is crucial, but different training

stages may require different learning rates.

» A learning rate scheduler is a strategy that adjusts the learning

rate during training.

change after a fixed number of steps; exponential decay; cyclic regime ...

Learning rate

=
<
SN

=
9
Ul

Learning rate scheduling

Phase 2:

cosine decay

Phase 1:

linear warm-up

Phase 3:
plateau

0

50000 100000 150000 200000 250000 300000

Million tokens

Gradient accumulation

» Larger batch sizes yield better estimates of the true gradient of

the loss function but require more memory.

» Gradient accumulation breaks up the gradient computation

across several smaller chunks.

» We compute the gradient for each micro-batch, add them up, and

then do a single weight update with the accumulated gradient.

Gradient accumulation

optimizer.zero_grad()

n_elements = 0

for microstep in range(n_microsteps):
X, y = next(data_loader)
loss = F.cross_entropy(model(x), y, reduction="sum")
loss.backward()

n_elements += len(x)
default is “mean”, which divides

loss = loss / n_elements by the number of elements in each mico-batch

optimizer.step()

Weight decay

» Large weights can lead to overfitting and prevent generalisation.

» Weight decay is a regularisation technique that penalises large
weights by adding a scaled L2 norm of the weights to the loss:

Les(0) = L(0) + All6]°

» Itis common to not weight-decay biases and other one-

dimensional tensors, such as those in layer norms.

