Natural Language Processing

Emergent abilities of LLMs

Marco Kuhlmann

Department of Computer and Information Science

Pretraining and finetuning

Step 1: Pretrain on language modelling

Large quantities of text, general facts about language

Pretraining and finetuning

Step 2: Finetune on specific tasks

Small quantities of labelled data, task-specific knowledge

Model growth

	GPT-1	GPT-2	GPT-3	GPT-4
Number of dimensions	768	1,600	12,288	?
Number of layers	12	48	96	120
Trainable parameters	0.117 B	1.542 B	175 B	1,800 B
Training data size	4 GB	40 GB	570 GB	?

Radford et al. (2018), Radford et al. (2019), Brown et al. (2020)

GPT-1: Effective pretraining

Language modelling is an effective pretraining method for a broad range of tasks in natural language understanding.

Radford et al. (2018)

Effective pretraining

Natural Language Inference (NLI)

Premise: A man inspects the uniform of a

figure in some East Asian country.

Hypothesis: The man is sleeping.

Label: contradiction

Question answering

Question: The first postage stamp was

made ...

Candidate answers: A. in England,

B. in America, C. by Alice, D. in 1910

Method	MNLI +	MNLI –	QNLI	RTE	SNLI
Previous state-of-the-art	80.6	80.1	82.3	61.7	89.3
GPT-1 (<u>Radford et al., 2018</u>)	82.1	81.4	88.1	56.0	89.9

GPT-2: Emergent zero-shot learning

zero-shot learning

the ability of a machine learning model to solve tasks out-of-the-box, with no examples and no gradient updates

Radford et al. (2019)

Zero-shot learning

Sequence prediction

Question: Who took the first steps on

the moon in 1969?

model output

Answer: Neil Armstrong

Question: Which Stanford University

alumna co-founded Coursera?

Answer: Daphne Koller

Sequence modelling

The trophy doesn't fit into the brown suitcase because it is too large.

it = ... p(trophy) > p(suitcase)

The trophy doesn't fit into the brown suitcase because it is too small.

it = ... p(trophy) < p(suitcase)

GPT-3: Emergent in-context learning

in-context learning

the ability of a machine learning model to learn tasks from a few examples, with no gradient updates

Brown et al. (2020)

Word unscrambling

gaot => goat

sakne => snake

brid => bird

fsih => fish

dcuk => duck

cmihp => chimp

in-context learning

Machine translation

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

in-context learning

Chain-of-thought prompting

Standard prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 11.

Chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 balls each is 6 balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they had 3 + 6 = 9. The answer is 9.

Zero-shot chain-of-thought prompting

Chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 balls each is 6 balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they had 3 + 6 = 9. The answer is 9.

Zero-shot chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: Let's think step by step. The cafeteria had 23 apples originally. They used 20 to make lunch, so they had 23 - 20 = 3. They bought 6 more apples, so they had 3 + 6 = 9. The answer is 9.

Prompt engineering

designed by a LM

Prompt	Accuracy
Let's work this out in a step by step way to be sure we have the right answer.	82.0
Let's think step by step.	78.7
First,	77.3
Let's think about this logically.	74.5
Let's solve this problem by splitting it into steps	72.2
Let's be realistic and think step by step.	70.8
Let's think like a detective step by step.	70.3
(Zero-shot)	17.7