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The alignment problem

- Language models are trained to generate text that is similar in
nature to the text in their training data.

o There is no incentive in language model training to generate text
that is helpful, truthful, ethical, etc.

» Asa consequence, language models are not necessarily aligned

with human intents, preferences, or values.
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Aligning to follow instructions

Explain the moon landing to a 6 year old in a few sentences.
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People went to the moon, and they took pictures of what they saw,
and sent them back to the earth so we could all see them.

Aligning language models to follow instructions (OpenAl, 2022)



https://openai.com/research/instruction-following
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Instruction finetuning

A successful model is expected
to use the provided instructions
(including task definition and
demonstration examples) to
output responses to a pool of
evaluation instances.

Wang et al., 2022
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Task Instruction

“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”
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* Input: “Context: ... ‘That's fantastic, I'm glad we came to
something we both agree with.” Utterance: ‘Me too. I hope you
have a wonderful camping trip.’”

* Output: “Yes”

* Explanation: “The participant engages in small talk when wishing

their opponent to have a wonderful trip.”
-

* Input: “Context: ... ‘Sounds good, I need food the most, what is
your most needed item?!’ Utterance: ‘My item is food too’.”

* Output: “Yes”

* Explanation: “The utterance only takes the negotiation forward

and there is no side talk. Hence, the correct answer is ‘No’.”
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* Input: “Context: ... ‘I am excited to spend time
with everyone from camp!’ Utterance: ‘That’s
awesome! I really love being out here with my
son. Do you think you could spare some food?’”

* Expected Output: “Yes”

-



https://aclanthology.org/2022.emnlp-main.340/
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Limitations of instruction finetuning

» Collecting ground-truth data for a large number of relevant tasks

is expensive and time-intensive.
» There are many tasks that do not have a single correct answer.

- Language modelling as an objective penalises token-level

mistakes, but many mistakes are at the conversation level.

» Human preferences are inconsistent.

Credits to Jesse Wu



Optimising for human preferences

Prompt: Explain the moon landing to a 6 year old in a few sentences.

People went to the Explain the theory of
moon, and they took gravity to a 6 year old.
pictures of what they

saw, and sent them back
to the earth so we could
all see them.



Optimising for human preferences

Language model

parameter update

Learning algorithm @

reward

Keeping humans
in the loop : Human feedback

Is expensive!
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Optimising for human preferences

Language model

parameter update

Reinforcement learning (PPO) @

reward

@ ‘ Reward model
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human feedback



Reward model

» We fine-tune a language model that takes a prompt x and a

completion y, and outputs the reward as a scalar.

» For training, we sample m prompt-response pairs and use a

cross-entropy loss with the binary human comparisons as labels:

lOSS(O) = - 2108( Re(xp Vi ) o RH('XP yz )))
preferred dispreferred

completion completion
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POl |Cy g I’ad |e nt Williams (1992); Schulman et al. (2017)

»  We want to update the parameters of our language model to
maximise expected reward.

» To do so, we sample m prompt-response pairs (xi, y;), compute

rewards according to our reward model, and do gradient ascent:
m
1
0.1 = 0, + “a Z R(Xp)’i)vet log Do, (i | x;)
i=1

reward is positive — take gradient steps to maximise probability
reward is negative — take gradient steps to minimise probability


https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1707.06347

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This datais used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old
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Explain gravity... Explain war...
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Moon is natural People went to
satellite of... the moon...
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Figure 2 from Quyang et al. (2022)

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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Write a story
about frogs



https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

PUtt”]g |t a” tOgether Ouyang et al. (2022); Schulman et al. (2017)

o Starting from the finetuned language model pFT, we obtain

updated language models pRL using policy gradient methods.

» To penalise the updated models for diverging too far from the
finetuned model, we use a modified reward function:

R'(x,y) = R(x,y) - Blog[ps-(y|1x)/p"" (y]|x)]

| |

sample reward model penalty based on KL divergence


https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/1707.06347

Effectiveness of human feedback
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Reference summaries

138 N) —  67B __ 12.9B
Model size

Stiennon (2020)
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