
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Linear layers

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Linear regression with one variable
Pr

ic
e

(th
ou

sa
nd

s
of

 d
ol

la
rs

)

175

350

525

700

Living area (square feet)
0 1000 2000 3000 4000 5000

Linear regression with one variable
Pr

ic
e

(th
ou

sa
nd

s
of

 d
ol

la
rs

)

175

350

525

700

Living area (square feet)
0 1000 2000 3000 4000 5000

The linear model

input vector (1-by-m)

weight vector (m-by-1)

output
value

m = number of features (independent variables)

bias

Convention:
Input vectors
are row vectors

<latexit sha1_base64="ZXR4zKaFFdkih7U2pJV4WhMRggs=">AAAFKnicjVRdb9MwFPW2AqN8bfDAAy8W0yQETdV0U7s9VJoYmkCirNB9SW01Oc5ta81xotgZdFF+Da/jz/A28cq/4AU7iTaWdmKWktyce3x8fW5iJ+BMqlrtYm5+oXTn7r3F++UHDx89frK0/PRA+lFIYZ/63A+PHCKBMwH7iikOR0EIxHM4HDon2yZ/eAqhZL7YU5MABh4ZCTZklCgNHS89P8Mt3D8FGn9LsufXBL/BzvHSSq1aSweeDuw8WEH56BwvL/zpuz6NPBCKciJlz64FahCTUDHKISn3IwkBoSdkBD0dCuKBHMTpDhK8qhEXD/1QX0LhFP13Rkw8KSeeo5keUWNZzBlwVq4XqeHGIGYiiBQImi00jDhWPjZ2YJeFQBWf6IDQkOlaMR2TkFClTStfW8ZUJgOg17dilrSkmnBofejuVhyfu1evgzgSjPouWGmBWk+C8ggTRqtXXsX4rebvmC23cPwad8FjRiGplDHusjPYAaKiEKRJawjj2KD6zdqorlfwbqALJjzHNtJpVxxNsey1Isu2CzR7zbI3q5tTvM0iT5OsIqtZTzQpZX5ko8ti9+DIQJ8iz9E+murbvvClNg1cLcHdrrFITxvEbSb0l4g7oX/pjxpn/vzPg0YF595lIm3Tiz0mJhWc6puEhrq6sYHK7oU9NTIfp1W2SaBmqdxg8bTAFxhFnIS30Lj0f1qkGznj2yiYzjTrsxTeMRkU2M26dRNz5lqmv1d9aucfMgdljotW3/yWQ31c2MXDYTo4qFftRrXxeX1lq5MfHIvoBXqJXiEbNdEWeo86aB9RlKDv6Bz9KJ2XfpYuSr8y6vxcPucZujZKv/8CAv+VUA==</latexit>𝑧 = 𝒙𝒘 + 𝑏

The linear model (multivariate version)

input vector (1-by-m)

weight matrix (m-by-n)

output vector
(1-by-n)

bias vector
(1-by-n)

m = number of input features, n = number of output features

<latexit sha1_base64="yXbYIx3HMCRj9h5EiSLlA5LDb6o=">AAAFNnicjVRdb9MwFPW2AqN8bINHXiymSQiaqummdnuoNDE0gURZofuS2mpynNvWmuNEsTPRRfkB/Bpex0/hhTfEK++8YCfRxtJOzFKSm3OPj6/PTewEnElVq32fm18o3bl7b/F++cHDR4+XlleeHEo/CikcUJ/74bFDJHAm4EAxxeE4CIF4Docj53TH5I/OIJTMF/tqEsDAIyPBhowSpaGT5dX+GdD4PMEtnEafk+x5lOBXWeQkmlWr1tKBpwM7D1ZRPjonKwt/+q5PIw+EopxI2bNrgRrEJFSMckjK/UhCQOgpGUFPh4J4IAdxupsEr2nExUM/1JdQOEX/nRETT8qJ52imR9RYFnMGnJXrRWq4OYiZCCIFgmYLDSOOlY+NNdhlIVDFJzogNGS6VkzHJCRUaQPL15YxlckA6PWtmCUtqSYcWu+6exXH5+7V6yCOBKO+C1ZaoNaToDzChNHqldcwfq35u2bLLRy/xF3wmFFIKmWMu+wcdoGoKARp0hrCODaofrM2qxsVvBfoggnPsc102hVHUyx7vciy7QLNXrfsrerWFG+ryNMkq8hq1hNNSpnv2eiy2H04NtCHyHO0j6b6ti98qU0DV0twt2ss0tMGcZsJ/VXiTuhf+qPGmT//86BRwbl3mUjb9GKfiUkFp/omoaGubmygsnthT43Mx2mVHRKoWSo3WDwt8AlGESfhLTQu/Z8W6UbO+DYKpjPN+iyFN0wGBXazbt3EnLmW6e9Vn9r5h8xBmaOi1Te/5VAfF3bxcJgODutVu1FtfNxY3e7kB8cieoaeoxfIRk20jd6iDjpAFH1BX9EF+la6KP0o/Sz9yqjzc/mcp+jaKP3+C+cimsw=</latexit>𝒛 = 𝒙𝑾 + 𝒃

Linear classification

• We can think of 𝒛 = 𝒙𝑾 + 𝒃 as a vector of class-specific scores.
The higher the score 𝒛[𝑘], the more likely 𝒙 belongs to class 𝑘.

• We can use these scores for classification: We predict the input 𝒙
to belong to the highest-scoring class 𝑘.

• With linear models, we can only solve a rather restricted class of
classification problems (linearly separable).

Handwritten digit recognition

Input: an image of a digit, represented as a
784-dimensional vector of greyscale values.

Predict: the digit depicted in the image

Graphical notation

add

mul

𝒙

𝑾

𝒃

𝒙

Linear

computation graph shorthand notation

red = trainable𝒛 𝒛

Linear models in PyTorch

>>> import torch

>>> # Create a linear model
>>> model = torch.nn.Linear(784, 10)

>>> # Inspect the shapes of the model parameters
>>> [p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]

>>> # Feed random data and inspect the shape of the output
>>> model.forward(torch.rand(784)).shape
torch.Size([10])

The softmax function

• We can convert the scores into a probability distribution 𝑝(𝑘 | 𝒙)
over the classes by sending them through the softmax function:

• This normalises the scores to the interval [0, 1] but does not
affect the relative ordering of the scores.

• In this context, the unnormalised (raw) scores are called logits.

TPęNBYʐ੏ʞ<਌> � FYQʐ੏<਌>ʞöਊ FYQʐ੏<ਊ>ʞ

<latexit sha1_base64="IqwNLUDgbhLBCUAIhcGv1+kFEpI=">AAAFjHicjZRdT9swFIZTWDfoNlbgcjfWEBKbmqopFQWhSggmtEnrYCtfUhNVjnPSWjgfih1EifJDd70fsdvZSYE1LRqWEtnHj18fvyexHTLKRaPxq7Sw+KL88tXScuX1m7cr76qraxc8iCMC5yRgQXRlYw6M+nAuqGBwFUaAPZvBpX19pOYvbyDiNPDPxDgEy8NDn7qUYCFDg2pqCrgVCQ9c4eHb1LTpkG2ZN0CSu2wQfexfW8jc75j7yHQjTJJ8AdyG07DEcj5NTB57g4Sm6CmU3qOD6kaj3sgamu0Yk86GNmmng9XFP6YTkNgDXxCGOe8bjVBYCY4EJQzSihlzCDG5xkPoy66PPeBWkvmUok0ZcZAbRPLxBcqi/65IsMf52LMl6WEx4sU5FZw314+Fu2sl1A9jAT7JN3JjhkSAlOnIoREQwcayg0lEZa6IjLB0U8jSTO2iEuMhkOmTqB11LsYMOl97JzU7YM7j0Epin5LAAT3Lr2JykLWkvpLqVzYROpT4sTpwByWfUA88qgTSWgWhHr2DY8AijoCraRlCKFFROdJ3660aOglluphNYrvZskdGIrqxXaQMo4AZ27qxV9+b4faKnIT0ItVuphLKyG90+JDsGVyp0PfYs6WLKvtu4AdcegaOlGBOTzkkl1lJl/rya0enUXBvjxjl9vzPgp0amliXa3RVJc6oP66hTF5NyFBPVjUU+btwpJ3cxlmVIxyKeSpPODwr8BOGMcPRMzQe7J8V6cX26DkKqjDt5jyFz5SHBbrd1J8i5+6lyvtYpm7+GTMQ6sLomOqXdOVVYRQvhtnORbNutOqtH62Ng8PJpbGkvdc+aFuaobW1A+2Ldqqda0T7XVourZXWyyvlVnm/3MnRhdJkzbo21crHfwFNMbqC</latexit>

class index

Linear layer + softmax function

softmax

Linear

p(class | input)

input (feature vector)

logits

<latexit sha1_base64="dmF+jab7Sb/VuqmAgLTy035nmRs=">AAAFTHicjVRdT9swFDVQNtZ9wfa4F2sICbakagpq6UMlBBPapHWwlS+pqZDj3LYWzodiB9Fl+S37NXtlz/sfe0OTZqcRjLRoWEpyc+7x8fW5iZ2QMyGr1V8zs3Ol+QcPFx6VHz95+uz54tKLIxHEEYVDGvAgOnGIAM58OJRMcjgJIyCew+HYOdvR+eNziAQL/AM5CqHnkYHP+owSqaDTxWa4emYb32zDPgeaXKRruIVtCRcyEUFfeuQiXc0z2eM4fZs9nXTtdHG5WqlmA08GVh4so3zsny7NXdluQGMPfEk5EaJrVUPZS0gkGeWQlu1YQEjoGRlAV4U+8UD0kmyPKV5RiIv7QaQuX+IM/XdGQjwhRp6jmB6RQ1HMaXBarhvL/mYvYX4YS/DpeKF+zLEMsDYMuywCKvlIBYRGTNWK6ZBEhEpla/nWMroyEQK9vRW9pCnkiEPrQ2fPcALu3rz2kthnNHDBzApUegKU7czXWt3yCsbbir+rt9zCyRvcAY9phdQoY9xhX2EXiIwjEDqtIIwTjao3c7OyYeC9UBVMeI5tZtNuOIpiWutFlmUVaNa6aTUrzQles8hTJLPIatRSRcqYH9ngutgDONHQp9hzlI+6+nbgB0KZBq6S4G5HW6Sm9ZI289W3ivej4NofORz78z8P6gbOvRuLtHUvDpg/MnCmrxMK6qjGhnJ8L+ypPvZxUmWHhHKayh0WTwp8gUHMSXQPjWv/J0U6sTO8j4LuTKM2TeEdE2GB3aiZdzGnrqX7e9Ondv4hc5D6rGjZ+rfsq+PCKh4Ok8FRrWLVK/XPG8tb2/nBsYBeoddoFVmogbbQe7SPDhFF39EPdIl+li5Lv0tXpT9j6uxMPuclujXmH/wFzQ6jXQ==</latexit>𝑝(𝑘 | 𝒙) = softmax(𝒙𝑾 + 𝒃)

Training a linear model

• We present the model with training samples of the form (𝒙, 𝑦)
where 𝒙 is a feature vector and 𝑦 is the gold-standard class.

• The output of the model is a vector of conditional probabilities
𝑝(𝑘 | 𝒙) where 𝑘 ranges over the possible classes.

• We want to train the model so as to maximise the likelihood of
the training data under this probability distribution.

Cross-entropy loss

• Instead of maximising the likelihood of the training data, we
minimise the model’s cross-entropy loss.

• The cross-entropy loss for a specific sample (𝒙, 𝑦) is the negative
log probability of the gold-standard class 𝑦, in our case:

all trainable
parameters

<latexit sha1_base64="uaqfxnqz/E2Y5NK0dyylLZ8TJ6I=">AAAFXnicjVRdT9swFDUfZawbA7aXSXuxhpBga6qmoBaEKiGY0KbRwVagSE2FHPe2tXA+FDuILsqP2q+Z9sZ+x15mJxGMtGhYSnJz7vHx9bmJbZ8zISuVX1PTM7OFuSfzT4vPni+8WFxafnkmvDCgcEo97gXnNhHAmQunkkkO534AxLE5tO3LfZ1vX0EgmOeeyJEPXYcMXNZnlEgFXSx9PlyzroBGlhyCJPE6tnYa1g42sMW9AbYkXMtIeH3pkOsYr+GEex0nj3aM36eAHeP1zqh7sbRSKVeSgccDMwtWUDaOL5Zn/lg9j4YOuJJyIkTHrPiyG5FAMsohLlqhAJ/QSzKAjgpd4oDoRsmuY7yqkB7ue4G6XIkT9N8ZEXGEGDmquFWHyKHI5zQ4KdcJZX+rGzHXDyW4NF2oH3IsPawtxD0WAJV8pAJCA6ZqxXRIAkKlMrp4bxldmfCB3t+KXtIQcsSh8al1VLI93rt77Uahy6jXAyMpUOkJUPYzV2t1iqsY7yn+gd5yA0fvcAscphXiUhHjFvsOB0BkGIDQaQVhHGlUvRlb5c0SPvJVwYRn2FYy7Y6jKIa5kWeZZo5mbhjmdnl7jLed5ymSkWfVq7EiJcxDNrgt9gTONfQldGzlo66+6bmeUKZBT0nwXktbpKZ1oyZz1deLjwPv1h85TP35nwe1Es68S0WauhcnzB2VcKKvEwpqqcb6Mr3n9lRLfRxX2Se+nKTygMXjAt9gEHISPELj1v9xkVZoDx+joDtTr05S+MCEn2PXq8ZDzIlr6f7e9amZfcgcpD4vGpb+LfvquDDzh8N4cFYtm7Vy7evmyu5ednDMozfoLVpDJqqjXfQRHaNTRNEP9BPdoN+zN4W5wkJhMaVOT2VzXqF7o/D6L7xtpf0=</latexit>𝐿(𝜽) = − log softmax(𝒙𝑾 + 𝒃)[𝑦]

Cross-entropy loss

0.0 0.2 0.4 0.6 0.8 1.0𝑝
0
2
4
6
8
−log𝑝

high loss if
gold-standard class
has low probability

low loss if
gold-standard class

has high probability

Gradient descent

• Step 0:	 Start with random values for the parameters 𝜽.

• Step 1:	 Compute the gradient of the loss function for the current
parameter settings, ∇𝐿(𝜽).

• Step 2:	 Update the parameters 𝜽 as follows: 𝜽 ≔ 𝜽 − 𝛼 ∇𝐿(𝜽)
The hyperparameter 𝛼 is the learning rate.

• Repeat step 1–2 until the loss is sufficiently low.

“Follow the gradient into valleys of low error.”

