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The linear model

Convention:

input vector (1-by-m) Input vectors

are row vectors

output
value

z=xw+Db bias

weight vector (m-by-1)

m = number of features (independent variables)



The linear model (multivariate version)

input vector (1-by-m)

output vector . bias vector
(1-by-n) z=xW+b (1-by-n)

weight matrix (m-by-n)

m = number of input features, n = number of output features



Linear classification

» We can think of z=xW + b as a vector of class-specific scores.

The higher the score z[k], the more likely x belongs to class k.

« We can use these scores for classification: We predict the input x
to belong to the highest-scoring class k.

» With linear models, we can only solve a rather restricted class of
classification problems (linearly separable).



Handwritten digit recognition
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Input: an image of a digit, represented as a
784-dimensional vector of greyscale values.

Predict: the digit depicted in the image



Graphical notation
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Linear models in PyTorch

>>> 1mport torch

>>> # Create a linear model

>>> model = torch.nn.Linear(784, 10)

>>> # Inspect the shapes of the model parameters
>>> [p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]

>>> # Feed random data and inspect the shape of the output
>>> model.forward(torch.rand(784)).shape
torch.Size([101)



The softmax function

»  We can convert the scores into a probability distribution p(k | x)

over the classes by sending them through the softmax function:

class index

| - exp(z[k])
softmax(z)[k] = > exp(z[i])

» This normalises the scores to the interval [0, 1] but does not

affect the relative ordering of the scores.

 In this context, the unnormalised (raw) scores are called logits.



Linear layer + softmax function

p(class | input)

T
(softmax)

| «—— logits

Linear

T

input (feature vector)

v

p(k| x) = softmax(xW + b)



Training a linear model

»  We present the model with training samples of the form (x, y)

where x is a feature vector and y is the gold-standard class.

» 'The output of the model is a vector of conditional probabilities

p(k | x) where k ranges over the possible classes.

« We want to train the model so as to maximise the likelihood of
the training data under this probability distribution.



Cross-entropy loss

 Instead of maximising the likelihood of the training data, we

minimise the model’s cross-entropy loss.

» The cross-entropy loss for a specific sample (x, y) is the negative

log probability of the gold-standard class y, in our case:

L(0) = —logsoftmax(xW +b)|y]

all trainable
parameters



Cross-entropy loss

high loss if

gold-standard class
has low probability

low loss if
gold-standard class
has high probability
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G rad | e nt desce nt “Follow the gradient into valleys of low error.”

» Step o: Start with random values for the parameters 0.

» Step 1: Compute the gradient of the loss function for the current
parameter settings, VL(0).

» Step 2: Update the parameters 0 as follows: 6:=0 — a VL(0)

The hyperparameter « is the learning rate.

» Repeat step 1—2 until the loss is sufficiently low.



