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The linear model

input vector (1-by-m)

weight vector (m-by-1)

output  
value

m = number of features (independent variables)

bias

Convention:  
Input vectors  
are row vectors

<latexit sha1_base64="ZXR4zKaFFdkih7U2pJV4WhMRggs="></latexit>𝑧 = 𝒙𝒘 + 𝑏



The linear model (multivariate version)

input vector (1-by-m)

weight matrix (m-by-n)

output vector  
(1-by-n)

bias vector  
(1-by-n)

m = number of input features, n = number of output features
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Linear classification

• We can think of  𝒛 = 𝒙𝑾 + 𝒃  as a vector of class-specific scores. 
The higher the score 𝒛[𝑘], the more likely 𝒙 belongs to class 𝑘. 

• We can use these scores for classification: We predict the input 𝒙 
to belong to the highest-scoring class 𝑘. 

• With linear models, we can only solve a rather restricted class of 
classification problems (linearly separable).



Handwritten digit recognition

Input: an image of a digit, represented as a  
784-dimensional vector of greyscale values. 

Predict: the digit depicted in the image



Graphical notation

add

mul

𝒙

𝑾

𝒃

𝒙

Linear

computation graph shorthand notation

red = trainable𝒛 𝒛



Linear models in PyTorch

>>> import torch 

>>> # Create a linear model 
>>> model = torch.nn.Linear(784, 10) 

>>> # Inspect the shapes of the model parameters 
>>> [p.shape for p in model.parameters()] 
[torch.Size([10, 784]), torch.Size([10])] 

>>> # Feed random data and inspect the shape of the output 
>>> model.forward(torch.rand(784)).shape 
torch.Size([10])



The softmax function

• We can convert the scores into a probability distribution 𝑝(𝑘 | 𝒙) 
over the classes by sending them through the softmax function: 

• This normalises the scores to the interval [0, 1] but does not 
affect the relative ordering of the scores. 

• In this context, the unnormalised (raw) scores are called logits.
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Linear layer + softmax function

softmax

Linear

p(class | input)

input (feature vector)

logits

<latexit sha1_base64="dmF+jab7Sb/VuqmAgLTy035nmRs="></latexit>𝑝(𝑘 | 𝒙) = softmax(𝒙𝑾 + 𝒃)



Training a linear model

• We present the model with training samples of the form (𝒙, 𝑦) 
where 𝒙 is a feature vector and 𝑦 is the gold-standard class. 

• The output of the model is a vector of conditional probabilities 
𝑝(𝑘 | 𝒙) where 𝑘 ranges over the possible classes. 

• We want to train the model so as to maximise the likelihood of 
the training data under this probability distribution.



Cross-entropy loss

• Instead of maximising the likelihood of the training data, we 
minimise the model’s cross-entropy loss. 

• The cross-entropy loss for a specific sample (𝒙, 𝑦) is the negative 
log probability of the gold-standard class 𝑦, in our case:

all trainable  
parameters

<latexit sha1_base64="uaqfxnqz/E2Y5NK0dyylLZ8TJ6I=">AAAFXnicjVRdT9swFDUfZawbA7aXSXuxhpBga6qmoBaEKiGY0KbRwVagSE2FHPe2tXA+FDuILsqP2q+Z9sZ+x15mJxGMtGhYSnJz7vHx9bmJbZ8zISuVX1PTM7OFuSfzT4vPni+8WFxafnkmvDCgcEo97gXnNhHAmQunkkkO534AxLE5tO3LfZ1vX0EgmOeeyJEPXYcMXNZnlEgFXSx9PlyzroBGlhyCJPE6tnYa1g42sMW9AbYkXMtIeH3pkOsYr+GEex0nj3aM36eAHeP1zqh7sbRSKVeSgccDMwtWUDaOL5Zn/lg9j4YOuJJyIkTHrPiyG5FAMsohLlqhAJ/QSzKAjgpd4oDoRsmuY7yqkB7ue4G6XIkT9N8ZEXGEGDmquFWHyKHI5zQ4KdcJZX+rGzHXDyW4NF2oH3IsPawtxD0WAJV8pAJCA6ZqxXRIAkKlMrp4bxldmfCB3t+KXtIQcsSh8al1VLI93rt77Uahy6jXAyMpUOkJUPYzV2t1iqsY7yn+gd5yA0fvcAscphXiUhHjFvsOB0BkGIDQaQVhHGlUvRlb5c0SPvJVwYRn2FYy7Y6jKIa5kWeZZo5mbhjmdnl7jLed5ymSkWfVq7EiJcxDNrgt9gTONfQldGzlo66+6bmeUKZBT0nwXktbpKZ1oyZz1deLjwPv1h85TP35nwe1Es68S0WauhcnzB2VcKKvEwpqqcb6Mr3n9lRLfRxX2Se+nKTygMXjAt9gEHISPELj1v9xkVZoDx+joDtTr05S+MCEn2PXq8ZDzIlr6f7e9amZfcgcpD4vGpb+LfvquDDzh8N4cFYtm7Vy7evmyu5ednDMozfoLVpDJqqjXfQRHaNTRNEP9BPdoN+zN4W5wkJhMaVOT2VzXqF7o/D6L7xtpf0=</latexit>𝐿(𝜽) = − log softmax(𝒙𝑾 + 𝒃)[𝑦]



Cross-entropy loss
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gold-standard class  
has low probability
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gold-standard class  
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Gradient descent

• Step 0:	 Start with random values for the parameters 𝜽. 

• Step 1:	 Compute the gradient of the loss function for the current 
parameter settings, ∇𝐿(𝜽). 

• Step 2:	 Update the parameters 𝜽 as follows:    𝜽 ≔ 𝜽 − 𝛼 ∇𝐿(𝜽) 
The hyperparameter 𝛼 is the learning rate. 

• Repeat step 1–2 until the loss is sufficiently low.

“Follow the gradient into valleys of low error.”


