Natural Language Processing Lecture 1.03

Neural language models

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Limitations of statistical n-gram models Goldberg § 9.3.2

o Scaling to larger n-gram sizes is problematic, both for
computational reasons and because of data sparsity.

» Techniques for mitigating these issues require careful
engineering and are not sufficiently flexible.

smoothing, interpolation

» Without additional effort, n-gram models are unable to share

statistical strength across “similar” words.

Observations of a red apple do not affect estimates for the yellow apples.

A Neural Probabilistic Language Model

» Associate each word in the discrete vocabulary with a continuous
embedding vector.

» Set up a neural network that computes the probability of a word

sequence as a function of its embedding vectors.

» During training, simultaneously learn the embedding vectors

and the weights of the neural network.

Bengio et al. (2003)

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

A neural four-gram model

feedforward
network

embedding
vectors

books

T

(softmax)

(Linear)

(relu)

(Linear)

(Embed)----(Embed)----(Embed)

T

students

=(con

.
cat)

T

opened

T

their

Bengio et al. (2003)

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

One-hot vectors

» To process words using deep learning libraries, we must

represent them as vectors (lists of numbers).

» A simple way to do this is to use one-hot vectors — vectors in

which all components but one are zero.

—— # words —— —— # words —— —— # words ——

students

Embedding vectors

» 'The word embeddings used in the neural n#-gram model are

realised by embedding layers.

» An embedding layer implements a mapping from a discrete

vocabulary to some d-dimensional vector space.

d l : d : : d

Embedding layers in PyTorch

vocab = {'students': @, 'opened': 1, 'their': 2}

import torch

| number of words to embed

e = torch.nn.Embedding(3, 2) size of each embedding vector

e(torch.tensor(vocab['opened']))
>>> tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>)

e(torch.tensor([0, 1, 2]1))

>>> tensor([[0.4503, -0.1549],
>>> [0.6399, 0.1779],
>>> -0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)

Embedding layers as linear layers

one-hot vector embedding embedding vector
for opened weights for opened

" 0.4503 —0.1549°
0 1 0] | 06399 01779 = [0.6399 0.1779]
| —0.6537 —0.5875

1 xV V xd 1 xd

size of the embedding
vocabulary width

Embedding layers as linear layers

An

embedding layer can be understood as a linear layer that

takes one-hot word vectors as inputs.

embedding vectors = word-specific weights of the linear layer

From a practical point of view, embedding layers are more

efficiently implemented as lookup tables.

Em

bedding layers are initialised with random values, and then

upc

ated through backpropagation, just like any other layer.

default in PyTorch: N(0, 1)

Comparison of statistical and neural n-gram models

Property Statistical model Neural model

number of parameters exponential in » linear in n

parameter sparsity mostly zeros Nno Zeros

learning of parameters count-based MLE gradient search

A neural four-gram model

feedforward
network

embedding
vectors

books

T

(softmax)

(Linear)

(relu)

(Linear)

(Embed)----(Embed)----(Embed)

T

students

=(con

.
cat)

T

opened

T

their

Bengio et al. (2003)

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

