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One-hot vectors

» To process words using neural networks, we need to represent

them as vectors of numerical values.

» 'The classical way to do this is to use one-hot vectors — vectors in

which all components but one are zero.
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Word embeddings

Compared to one-hot vectors, word embeddings
- are shorter but dense
» support a useful notion of similarity

o can be learned from data
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https://projector.tensorflow.org

You shall know a word by the company it keeps

What do the following sentences tell us about Garrotxa?

» Garrotxa is made from milk.
» Garrotxa pairs well with crusty country bread.

» Garrotxa is aged in caves to enhance mould development.

Sentences taken from the English Wikipedia



https://en.m.wikipedia.org/wiki/Garrotxa_cheese

The dIStI‘IbUtIOna| hypOthESIS Eisenstein § 14.1

» 'The distributional hypothesis states that words with similar

distributions have similar meanings.

with similar distributions = are used and occur in the same contexts

o This suggests that we can learn word representations from

cO-occurrence statistics.

similar co-occurrence distributions = similar meanings
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Vector similarity = meaning similarity
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Learning word embeddings

* Count-based methods: Matrix factorisation

Minimise the difference between the co-occurrence matrix and

an approximate reconstruction of it from word embeddings.

* Prediction-based methods: Neural networks

Maximise the likelihood of a corpus under a probability model

that is conditioned on the word embeddings.



Evaluation of word embeddings

o visualisation of the embedding space

Requires dimensionality reduction (PCA, t-SNE, UMAP)

» computing relative similarities

cosine similarity, Euclidean distance

» similarity benchmarks

Example: odd one out - breakfast lunch dinner surgery

» analogy benchmarks

Example: woman is to man as sister is to ¢

Eisenstein § 14.6
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