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Co-occurrence matrix

cheese bread

word vector

cheese —
for cheese

bread 7 12 0 0

goat 5 0 3 12

sheep 1 0 12 2




Word embeddings via dimensionality reduction

» 'The row vectors of co-occurrence matrices are high-dimensional,

but we want word embeddings to be low-dimensional.

hundreds instead of hundreds of thousands of dimensions

» One idea is to use dimensionality reduction and find a lower-

dimensional representation of the co-occurrence matrix.



Word embeddings via dimensionality reduction
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original co-occurrence matrix
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reconstruction error: 5.442
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Truncated singular value decomposition
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Reading off word embeddings

»  We would like to quantity the similarity of word embeddings.
The main operation involved in this is the dot product.

cosine similarity = dot product of length-normalised vectors

» Conveniently, the dot products between the row vectors of the
reconstructed matrix are equal to the dot products between the

row vectors of the lower-dimensional matrix UX.

»  We could read off word embeddings from that matrix; but

empirically it works better to dismiss X and only use U.

Levy et al. (2015)
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Limitations of the singular value decomposition

» Computing the singular value decomposition is expensive; as a

rule of thumb, the running time is in @(V2d).

In practice, randomized algorithms are used.

« The method is not incremental - the decomposition needs to be

recomputed from scratch whenever new data arrives.

Mahoney (2016)
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Pointwise mutual information

» Raw counts give too much weight to function words such as the,
she, has, and too little weight to cheese, bread, sheep.

» We measure the associative strength between a target word w and

a context ¢ using pointwise mutual information:

P(w,c)

PMI(w, c¢) = log P(w)P(O




Positive pointwise mutual information (PPMI)

» Because the rows of co-occurrence matrices are sparse, many

PMI values will be log 0 = —co.

A common approach is to use positive pointwise mutual

information (PPMI), and replace all negative values with zero:

PPMI(w, ¢) = max(PM

» A shortcoming of this approach is its

I[(w, ¢),0)

bias towards infrequent

events; for these, the PPMI value will

be very high.



