Learning word embeddings via singular value decomposition

Marco Kuhlmann

Department of Computer and Information Science

Co-occurrence matrix

	cheese	bread	goat	sheep	
cheese	14	7	5	1	word vector for cheese
bread	7	12	0	0	
goat	5	0	8	12	
sheep	1	0	12	2	

Word embeddings via dimensionality reduction

• The row vectors of co-occurrence matrices are high-dimensional, but we want word embeddings to be low-dimensional.

hundreds instead of hundreds of thousands of dimensions

 One idea is to use dimensionality reduction and find a lowerdimensional representation of the co-occurrence matrix.

Word embeddings via dimensionality reduction

Singular value decomposition

Truncated singular value decomposition

Eisenstein § 14.3

Deerwester et al. (1990)

14	7	5	1
7	12	0	0
5	0	8	12
1	0	12	2

 $oldsymbol{U}$

-0.678	0.293	0.124	0.662
-0.445	0.562	-0.044	-0.696
-0.491	-0.591	-0.628	-0.124
-0.318	-0.499	0.767	-0.248

 $\boldsymbol{\Sigma}$

22.676	0.000	0.000	0.000
0.000	15.644	0.000	0.000
0.000	0.000	7.655	0.000
0.000	0.000	0.000	5.335

 $oldsymbol{V}^{ op}$

-0.678	-0.445	-0.491	-0.318
0.293	0.562	-0.591	-0.499
-0.124	0.044	0.628	-0.767
0.662	-0.696	-0.124	-0.248

14	7	5	1
7	12	0	0
5	0	8	12
1	0	12	2

 \boldsymbol{U}

-0.678	0.293	0.124	0.662
-0.445	0.562	-0.044	-0.696
-0.491	-0.591	-0.628	-0.124
-0.318	-0.499	0.767	-0.248

Σ

22.676	0.000	0.000	0.000
0.000	15.644	0.000	0.000
0.000	0.000	7.655	0.000
0.000	0.000	0.000	5.335

 $oldsymbol{V}^{ op}$

-0.678	-0.445	-0.491	-0.318
0.293	0.562	-0.591	-0.499
-0.124	0.044	0.628	-0.767
0.662	-0.696	-0.124	-0.248

reconstruction d = 3

11.659	9.459	5.439	1.878
9.459	9.418	-0.461	-0.922
5.439	-0.461	7.918	11.835
1.878	-0.922	11.835	1.671

reconstruction error: 1.779

14	7	5	1
7	12	0	0
5	0	8	12
1	0	12	2

 \boldsymbol{U}

-0.678	0.293	0.124	0.662
-0.445	0.562	-0.044	-0.696
-0.491	-0.591	-0.628	-0.124
-0.318	-0.499	0.767	-0.248

 $\boldsymbol{\Sigma}$

22.676	0.000	0.000	0.000
0.000	15.644	0.000	0.000
0.000	0.000	7.655	0.000
0.000	0.000	0.000	5.335

 $V^{\scriptscriptstyle op}$

-0.678	-0.445	-0.491	-0.318
0.293	0.562	-0.591	-0.499
-0.124	0.044	0.628	-0.767
0.662	-0.696	-0.124	-0.248

reconstruction d = 3

11.659	9.459	5.439	1.878
9.459	9.418	-0.461	-0.922
5.439	-0.461	7.918	11.835
1.878	-0.922	11.835	1.671

reconstruction d = 2

11.776	9.417	4.845	2.605
9.417	9.432	-0.249	-1.181
4.845	-0.249	10.934	8.148
2.605	-1.181	8.148	6.178

reconstruction error: 1.779 reconstruction error: 5.442

14	7	5	1
7	12	0	0
5	0	8	12
1	0	12	2

 \boldsymbol{U}

-0.678	0.293	0.124	0.662
-0.445	0.562	-0.044	-0.696
-0.491	-0.591	-0.628	-0.124
-0.318	-0.499	0.767	-0.248

reconstruction d = 3

11.659	9.459	5.439	1.878
9.459	9.418	-0.461	-0.922
5.439	-0.461	7.918	11.835
1.878	-0.922	11.835	1.671

 \sum

22.676	0.000	0.000	0.000
0.000	15.644	0.000	0.000
0.000	0.000	7.655	0.000
0.000	0.000	0.000	5.335

reconstruction d = 2

11.776	9.417	4.845	2.605
9.417	9.432	-0.249	-1.181
4.845	-0.249	10.934	8.148
2.605	-1.181	8.148	6.178

 $V^{\scriptscriptstyle op}$

-0.678	-0.445	-0.491	-0.318
0.293	0.562	-0.591	-0.499
-0.124	0.044	0.628	-0.767
0.662	-0.696	-0.124	-0.248

reconstruction d = 1

10.436	6.843	7.552	4.888
6.843	4.486	4.951	3.205
7.552	4.951	5.465	3.537
4.888	3.205	3.537	2.289

reconstruction error: 1.779 reconstruction error: 5.442

reconstruction error: 20.737

Truncated singular value decomposition

Reading off word embeddings

- We would like to quantify the similarity of word embeddings.
 The main operation involved in this is the dot product.
 - cosine similarity = dot product of length-normalised vectors
- Conveniently, the dot products between the row vectors of the reconstructed matrix are equal to the dot products between the row vectors of the lower-dimensional matrix $U\Sigma$.
- We could read off word embeddings from that matrix; but empirically it works better to dismiss Σ and only use U.

Limitations of the singular value decomposition

• Computing the singular value decomposition is expensive; as a rule of thumb, the running time is in $\Theta(V^2d)$.

In practice, randomized algorithms are used.

• The method is not incremental – the decomposition needs to be recomputed from scratch whenever new data arrives.

Pointwise mutual information

- Raw counts give too much weight to function words such as *the*, *she*, *has*, and too little weight to *cheese*, *bread*, *sheep*.
- We measure the associative strength between a target word *w* and a context *c* using **pointwise mutual information**:

$$PMI(w,c) = \log \frac{P(w,c)}{P(w)P(c)}$$

Positive pointwise mutual information (PPMI)

- Because the rows of co-occurrence matrices are sparse, many PMI values will be $\log 0 = -\infty$.
- A common approach is to use **positive pointwise mutual information (PPMI)**, and replace all negative values with zero:

$$PPMI(w,c) = \max(PMI(w,c),0)$$

• A shortcoming of this approach is its bias towards infrequent events; for these, the PPMI value will be very high.