Natural Language Processing

Learning word embeddings
with neural networks

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Embedding layers

o In neural networks, word embeddings are realised by

embedding layers.

» An embedding layer implements a mapping from a vocabulary of

words to some d-dimensional vector space.

d ! : d ! : d

Embedding layers in PyTorch

vocab = {'great': 0, 'monster': 1, 'movie': 2}

import torch

| number of words to embed

e = torch.nn.Embedding(3, 2) size of each embedding vector

e(torch.tensor(vocab['monster']))
tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>)

e(torch.tensor([0, 1, 2]))
tensor([[©0.4503, -0.1549],
[0.6399, 0.1779],
—-0.6537, -0.5875]1, grad_fn=<EmbeddingBackward>)

The continuous bag-of-words (CBOW) classifier

P(class | text)

T

logistic (softmax)
regression T
; projection down
L
(mfar) to K classes
continuous (3\
> mean |-
bag-of-words \ J

(Embed}----(Embed}----(Embed)
T T T

great monster movie

Implementation of the CBOW classifier

(nn.Module):

(, num_words, embedding_dim, num_classes):
(). init ()
.embedding = nn.Embedding(num_words, embedding_dim)

. lLinear = nn.Linear(embedding_dim, num_classes)
(’ X):

. linear(torch.mean(.embedding(x), -2))

Task-specific word embeddings

» When we train a neural network, the word embeddings are
optimised for the training task.

» Representation learning: Words can "mean” different things in

difterent tasks. The network learns the optimal representation.

o There is no guarantee that the embeddings obtained from neural

networks model co-occurrence distributions.

Two different perspectives on word embeddings

* Count-based approach

similar embeddings = the corresponding

words have similar distributions

* Prediction-based approach

similar embeddings = the corresponding

words behave similarly in learning tasks

pizza
sushi falafel

jazz rock

funk
laptop

touchpad

neg

pOS

Word embeddings for transfer learning

» Transfer learning aims to re-use knowledge gained while solving
some previous task when solving the next task.

speed up training, reduce the need for training data

 In the context of deep learning, transfer learning is typically

implemented by re-using some part of a trained model.

» In particular, we could try re-using the embedding layers, instead
of learning embeddings from scratch for each task.

The continuous bag-of-words (CBOW) classifier

P(class | text)

T
(softmax)

. T projection down
L
(mﬂear) to K classes

=(mean)<

T
reused part (Embed)----(Embed)----(Embed)
T T T

great monster movie

Re-using pre-trained word embeddings

Pre-train embeddings on task A and use them to initialise the

embedding layers of the network for task B. Then:

» Alternative 1: Train as usual, eftectively fine-tuning the pre-
trained embeddings to the task at hand.

» Alternative 2: Freeze the weights of the embedding layers,
to prevent the pre-trained embeddings from being modified.

What pre-training tasks should we use?

- We want to learn representations that are generally useful,
so we prefer pre-training tasks that are general.

» We need to find training data for the pre-training tasks,

so we prefer tasks for which data is abundant.

ideal candidate: raw text

» 'The standard pre-training task for word embeddings is language

modelling, e.g., to predict co-occurrence patterns.

Remember the Distributional Hypothesis!

