
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Learning word embeddings
with neural networks

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

• In neural networks, word embeddings are realised by
embedding layers.

• An embedding layer implements a mapping from a vocabulary of
words to some 𝑑-dimensional vector space.

Embedding layers

great

d

monster

d

movie

d

Embedding layers in PyTorch

vocab = {'great': 0, 'monster': 1, 'movie': 2}

import torch

e = torch.nn.Embedding(3, 2)

e(torch.tensor(vocab['monster']))
tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>)

e(torch.tensor([0, 1, 2]))
tensor([[0.4503, -0.1549],
 [0.6399, 0.1779],
 [-0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)

number of words to embed

size of each embedding vector

The continuous bag-of-words (CBOW) classifier

softmax

Embed EmbedEmbed

mean

Linear

great monster movie

logistic
regression

continuous
bag-of-words

projection down
to K classes

P(class | text)

Implementation of the CBOW classifier

class CBOWClassifier(nn.Module):

 def __init__(self, num_words, embedding_dim, num_classes):
 super().__init__()
 self.embedding = nn.Embedding(num_words, embedding_dim)
 self.linear = nn.Linear(embedding_dim, num_classes)

 def forward(self, x):
 # x is a tensor containing word ids
 return self.linear(torch.mean(self.embedding(x), -2))

Task-specific word embeddings

• When we train a neural network, the word embeddings are
optimised for the training task.

• Representation learning: Words can “mean” different things in
different tasks. The network learns the optimal representation.

• There is no guarantee that the embeddings obtained from neural
networks model co-occurrence distributions.

• Count-based approach

similar embeddings ⇒ the corresponding
words have similar distributions

• Prediction-based approach

similar embeddings ⇒ the corresponding
words behave similarly in learning tasks

Two different perspectives on word embeddings

neg

pos

pizza
sushi falafel

rock
funk

jazz

touchpad
laptop

Word embeddings for transfer learning

• Transfer learning aims to re-use knowledge gained while solving
some previous task when solving the next task.
speed up training, reduce the need for training data

• In the context of deep learning, transfer learning is typically
implemented by re-using some part of a trained model.

• In particular, we could try re-using the embedding layers, instead
of learning embeddings from scratch for each task.

The continuous bag-of-words (CBOW) classifier

softmax

Embed EmbedEmbed

mean

Linear

great monster movie

reused part

projection down
to K classes

P(class | text)

Re-using pre-trained word embeddings

Pre-train embeddings on task A and use them to initialise the
embedding layers of the network for task B. Then:

• Alternative 1: Train as usual, effectively fine-tuning the pre-
trained embeddings to the task at hand.

• Alternative 2: Freeze the weights of the embedding layers,
to prevent the pre-trained embeddings from being modified.

What pre-training tasks should we use?

• We want to learn representations that are generally useful,
so we prefer pre-training tasks that are general.

• We need to find training data for the pre-training tasks,
so we prefer tasks for which data is abundant.
ideal candidate: raw text

• The standard pre-training task for word embeddings is language
modelling, e.g., to predict co-occurrence patterns.
Remember the Distributional Hypothesis!

