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• In neural networks, word embeddings are realised by  
embedding layers. 

• An embedding layer implements a mapping from a vocabulary of 
words to some 𝑑-dimensional vector space.
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Embedding layers in PyTorch

vocab = {'great': 0, 'monster': 1, 'movie': 2} 

import torch 

e = torch.nn.Embedding(3, 2) 

e(torch.tensor(vocab['monster'])) 
# tensor([0.6399, 0.1779], grad_fn=<EmbeddingBackward>) 

e(torch.tensor([0, 1, 2])) 
tensor([[ 0.4503, -0.1549], 
        [ 0.6399,  0.1779], 
        [-0.6537, -0.5875]], grad_fn=<EmbeddingBackward>)

number of words to embed

size of each embedding vector



The continuous bag-of-words (CBOW) classifier
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Implementation of the CBOW classifier

class CBOWClassifier(nn.Module): 

    def __init__(self, num_words, embedding_dim, num_classes): 
        super().__init__() 
        self.embedding = nn.Embedding(num_words, embedding_dim) 
        self.linear = nn.Linear(embedding_dim, num_classes) 

    def forward(self, x): 
        # x is a tensor containing word ids 
        return self.linear(torch.mean(self.embedding(x), -2))



Task-specific word embeddings

• When we train a neural network, the word embeddings are 
optimised for the training task. 

• Representation learning: Words can “mean” different things in 
different tasks. The network learns the optimal representation. 

• There is no guarantee that the embeddings obtained from neural 
networks model co-occurrence distributions.



• Count-based approach 

similar embeddings ⇒ the corresponding  
words have similar distributions 

• Prediction-based approach 

similar embeddings ⇒ the corresponding  
words behave similarly in learning tasks

Two different perspectives on word embeddings
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Word embeddings for transfer learning

• Transfer learning aims to re-use knowledge gained while solving 
some previous task when solving the next task. 
speed up training, reduce the need for training data 

• In the context of deep learning, transfer learning is typically 
implemented by re-using some part of a trained model. 

• In particular, we could try re-using the embedding layers, instead 
of learning embeddings from scratch for each task.



The continuous bag-of-words (CBOW) classifier
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Re-using pre-trained word embeddings

Pre-train embeddings on task A and use them to initialise the 
embedding layers of the network for task B. Then: 

• Alternative 1:  Train as usual, effectively fine-tuning the pre-
trained embeddings to the task at hand. 

• Alternative 2:  Freeze the weights of the embedding layers,  
to prevent the pre-trained embeddings from being modified.



What pre-training tasks should we use?

• We want to learn representations that are generally useful,  
so we prefer pre-training tasks that are general. 

• We need to find training data for the pre-training tasks,  
so we prefer tasks for which data is abundant. 
ideal candidate: raw text 

• The standard pre-training task for word embeddings is language 
modelling, e.g., to predict co-occurrence patterns. 
Remember the Distributional Hypothesis!


