Natural Language Processing

Subword models

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Subword models

Word embeddings as we have covered them so far assume atomic
words and a fixed vocabulary.

In practical applications, we will often encounter words that we

do not have an embedding for.

EN mmm - Nov 10
Replying to
haayii! don't skip ur breakfast @, and hv a gr8t dayy <33

Remember Heaps’ law! o 0 T-

One way to deal with this problem is to use models that work at

the subword level, such as character-based models.

Rationale for subword models

» Working with subword units makes sense from a linguistic point

of view, as subword units resemble morphemes.

Morpheme+s are the small+est mean+ing+ful unit+s of language.

o Features at the subword level have been shown to be very

predictive in non-neural models for e.g. part-of-speech tagging.

Does the word end in -tion or -ism? Then chances are, it’s a noun!

Different types of subword models

Type 1: Use the same types of architectures that we find in word-

based models, but apply them to subword units.

Type 2: Augment the architectures of word-based models with

submodels that compose word representations from characters.

« Type 3: Give up on word-basec

|architectures altogether and

process language as a connectec

| sequence of characters.

WordPiece tokenisation in BERT

Raw text

The history of morphological analysis dates back to the
ancient Indian linguist Panini, who formulated the
3,959 rules of Sanskrit morphology in the text
Astadhyayt by using a constituency grammar.

WordPiece tokenisation

The history of m ##or ##phological analysis dates back to the

ancient Indian linguist P ##a ##n ##ini , who formulated the
3, 95 ##9 rules of Sanskrit morphology in the text

v
'

-

The Muppet Wiki

A ##sS ##t ##a ##dh ##y ##a ##Y ##1 by using a constituency grammar .

To obtain a word vector, take the
average of the 9 word piece vectors.

https://muppet.fandom.com/wiki/Bert

Byte Pair Encoding algorithm

o Initialise the word unit vocabulary with all characters.

plus a special end-of-word marker, here denoted by $

» Generate a new word unit by combining two units from the
current vocabulary, increasing vocabulary size by one.

Choose the new unit as the most frequent pair of adjacent units.

WordPiece: maximise likelihood under a language model

» Repeat the previous step as long as the vocabulary size does not

exceed a maximal size.

Sennrich et al. (2016); Schuster and Nakajima (2012)

https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.1109/ICASSP.2012.6289079

Byte Pair Encoding: Example

number of
occurrences in data

Merged pair Vocabulary size
0 - lows/5 lowers$/2 newests$/6 widests/3 11
1 es/9 lows lowers new|[es]ts wid[es]ts 12
2 [es]t/9 lows lowers new|[est]s$ wid[est]$ 13
3 lest]$/9 lows lowers new[est$] wid[ests$] 14
4 lo/7 [lo]ws [lo]wers new[ests] wid[est$] 15
5 [lo]w/7 [low]s [low]ers new[ests] wid[ests] 16

Example from Sennrich et al. (2016)

https://www.aclweb.org/anthology/P16-1162

Composing word representations from characters

Character-level word representations are typically built using

convolutional neural networks or recurrent neural networks.

word representation

Embed CLWR

T T

word word

combined (augmented) model

word representation

CLWR

word

purely character-based model

Composing word representations using CNNs

0.00 0.00 0.00

0.08 0.95 0.85 1.010
0.98 0.78 0.02 1.615
0.32 0.13 0.32 1.520
0.64 0.28 0.92 1.262
0.05 0.25 0.77 1.259
0.38 0.59 0.66 1.257

0.00 0.00 0.00

Composing word representations using CNNs

0.00 0.00 0.00

0.08 0.95 0.85 1.010 1.626
0.98 0.78 0.02 1.615 1.727
0.32 0.13 0.32 1.520 1.144
0.64 0.28 0.92 1.262 0.973
0.05 0.25 0.77 1.259 1.159
0.38 0.59 0.66 1.257 1.050

0.00 0.00 0.00

Composing word representations using CNNs

0.00 0.00 0.00

0.08 0.95 0.85 1.010 1.626 1.242
0.98 0.78 0.02 1.615 1.727 1.355
0.32 0.13 0.32 1.520 1.144 1.648
0.64 0.28 0.92 1.262 0.973 1.974
0.05 0.25 0.77 1.259 1.159 1.859
0.38 0.59 0.66 1.257 1.050 1.369

0.00 0.00 0.00

Composing word representations using CNNs

0.00 0.00 0.00

0.08 0.95 0.85 1.010 1.626 1.242
0.98 0.78 0.02 1.615 1.727 1.355
0.32 0.13 0.32 1.520 1.144 1.648
0.64 0.28 0.92 1.262 0.973 1.974
0.05 0.25 0.77 1.259 1.159 1.859
0.38 0.59 0.66 1.257 1.050 1.369
0.00 0.00 0.00 mlaX mlax mlaX

character-level word representation 1.615 1.727 1.974

Training augmented models

» In augmented models, the character-level word representations

let us deal with unknown words at test time.

- However, we need to actively encourage these models to learn
these character-level representations at training time.

» In word dropout, we replace each word with a dummy (UNK)

token with some dropout probability p, e.g.

B x
- #(w) + o

where « is a small constant

p

Kiperwasser and Goldberg (2016)

http://dx.doi.org/10.1162/tacl_a_00101

