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Dependency parsing

• Syntactic parsing is the task of mapping a sentence to a formal 
representation of its syntactic structure. 

• We focus on representations in the form of dependency trees. 

• A syntactic dependency is an asymmetric relation between a 
head and a dependent.
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Dependency trees

• A dependency tree for a sentence 𝑥 is a digraph 𝐺 = (𝑉, 𝐴) 
where 𝑉 = {1, …, |𝑥|} and where there exists a 𝑟 ∈ 𝑉 such that 
every 𝑣 ∈ 𝑉 is reachable from 𝑟 via exactly one directed path. 

• The vertex 𝑟 is called the root of 𝐺. 

• The arcs of a dependency tree may be labelled to indicate the type 
of the syntactic relation that holds between the two elements. 
Universal Dependencies v2 uses 37 universal syntactic relations (list).

https://universaldependencies.org/u/dep/all.html


Representation of dependency trees
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Two parsing paradigms

• Graph-based dependency parsing 

Cast parsing as a combinatorial optimisation problem over a 
(possibly restricted) set of dependency trees. 

• Transition-based dependency parsing 

Cast parsing as a sequence of local classification problems: at 
each point in time, predict one of several parser actions.



Graph-based dependency parsing

• Given a sentence 𝑥 and a set 𝑌(𝑥) of candidate dependency trees 
for 𝑥, we want to find a highest-scoring tree 𝑦̂  ∈ 𝑌(𝑥): 

• The computational complexity of this problem depends on the 
choice of the set 𝑌(𝑥) and the scoring function.
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The arc-factored model

• Under the arc-factored model, the score of a dependency tree is 
expressed as the sum of the scores of its arcs: 

• The score of a single arc can be computed by means of a neural 
network that receives the head and the dependent as input. 
for example, a simple linear layer:    score(𝑥, ℎ → 𝑑) = [𝒉 ; 𝒅] · 𝒘 + 𝑏
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Computational complexity

• Under the arc-factored model, the highest-scoring dependency 
tree can be found in 𝑂(𝑛3) time (𝑛 = sentence length). 
Chu–Liu/Edmonds algorithm; McDonald et al. (2005) 

• Even seemingly minor extensions of the arc-factored model 
entail intractable parsing. 
McDonald and Satta (2007) 

• For some of these extensions, polynomial-time parsing is 
possible for restricted classes of dependency trees. 

https://www.aclweb.org/anthology/H05-1066/
https://www.aclweb.org/anthology/W07-2216/


Transition-based dependency parsing

• We cast parsing as a sequence of local classification problems 
such that solving these problems builds a dependency tree. 

• In most approaches, the number of classifications required for 
this is linear in the length of the sentence.



Transition-based dependency parsing

• The parser starts in the initial configuration. 
empty dependency graph 

• It then calls a classifier, which predicts the transition that the 
parser should make to move to a next configuration. 
extend the partial dependency tree 

• This process is repeated until the parser reaches a terminal 
configuration. 
complete dependency tree



Training transition-based dependency parsers

• To train a transition-based dependency parser, we need a 
treebank with gold-standard dependency trees. 

• In addition to that, we need an algorithm that tells us the gold-
standard transition sequence for a tree in that treebank. 

• Such an algorithm is conventionally called an oracle.



Comparison of the two parsing paradigms

Graph-based parsing 

slow (in practice, cubic in the 
length of the sentence) 

restricted feature models  
(in practice, arc-factored) 

features and weights directly 
defined on target structures   

Transition-based parsing 

fast (quasi-linear in the length 
of the sentence) 

rich feature models  
defined on configurations 

indirection – features and 
weights defined on transitions


