
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Introduction to dependency parsing

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Dependency parsing

• Syntactic parsing is the task of mapping a sentence to a formal
representation of its syntactic structure.

• We focus on representations in the form of dependency trees.

• A syntactic dependency is an asymmetric relation between a
head and a dependent.

Koller co-founded Coursera

subject object

Dependency trees

• A dependency tree for a sentence 𝑥 is a digraph 𝐺 = (𝑉, 𝐴)
where 𝑉 = {1, …, |𝑥|} and where there exists a 𝑟 ∈ 𝑉 such that
every 𝑣 ∈ 𝑉 is reachable from 𝑟 via exactly one directed path.

• The vertex 𝑟 is called the root of 𝐺.

• The arcs of a dependency tree may be labelled to indicate the type
of the syntactic relation that holds between the two elements.
Universal Dependencies v2 uses 37 universal syntactic relations (list).

https://universaldependencies.org/u/dep/all.html

Representation of dependency trees

I wanted to try someplace new

1 2 3 4 5 6

2 0 4 2 4 5

nsubj root mark xcomp obj amod

word position

head position

1 2 3 4 5 6

nsubj mark

xcomp

obj amod

dependency relation

Two parsing paradigms

• Graph-based dependency parsing

Cast parsing as a combinatorial optimisation problem over a
(possibly restricted) set of dependency trees.

• Transition-based dependency parsing

Cast parsing as a sequence of local classification problems: at
each point in time, predict one of several parser actions.

Graph-based dependency parsing

• Given a sentence 𝑥 and a set 𝑌(𝑥) of candidate dependency trees
for 𝑥, we want to find a highest-scoring tree 𝑦̂ ∈ 𝑌(𝑥):

• The computational complexity of this problem depends on the
choice of the set 𝑌(𝑥) and the scoring function.

Оਚ � BSHNBYਚóਁ	ਙ
 TDPSF	ਙ
 ਚ

<latexit sha1_base64="rkh5/33YeeDmLxw/mMStAJIdWX0=">AAAFiHicjVRtb9MwEM7GCiO8bfCRLxbVpA6lVdNN64pUadqmCSTKyrqXorqqnOTWWkvsEDulJco/4tfwDcGPwW7LRtNNmqUkznPPPfbd2eeEPhWyXP61tPxgJffw0epj88nTZ89frK2/PBc8jlw4c7nPo7ZDBPiUwZmk0od2GAEJHB8unKsDbb8YQiQoZ6dyHEI3IH1GL6lLpIJ6a0d4QGQyThG26thCOCBywMMESxjJhER9bAVklKa9ZIwwZehLYbSpuBOrcHkEaWFkofFmby1fLpUnAy1O7Nkkb8xGs7e+8hZ73I0DYNL1iRAduxzKrlpSUteH1MSxgJC4V6QPHTVlJADRTSYBp2hDIR665JF6mEQT9H+PhARCR6KY+iNMfAJfYxpBc2bXbiIENzWzpo7Dfa8o5NiH+ofWsaX9b367Scyoyz0oTuRNLEAGhDKt1zERatHvcARExhEIVEeJghBKNKr+irulbQsdhypC4s+w3dSa4yhK0d7Ksmw7Q7O3inatVFvg1bI8RSpmWdVKqkgT5kfav97sKbQ19CkOHHVg9O4bnHGhUgqekvC9ls6CcusmDcrU6UHNiP9LgRzcLwU7FjrSJaujqUZDp/eUsrGFJvLaoKCWG9FQTt+ZkHamaVxUOSChvE3ljgwvCpxAP/ZJdA+N6/QvirRiZ3AfBV2YauU2hUMqwgy7Winexbx1LV3emzI1pkfVB4mH4NaxGAfO5dx10fWTnPtC0cKID6kHLg8Cwjzcp0NgicIPQd1TfU3UXfEOVcMJqISo3Wzi5snxfsfuJs20sJmkyYZaHUfA4Nu8Bmacicn+8DvsaQGholNbiuScadqC9KI6jrydmqq72Nlesjg5r5Ts7VLt83Z+b3/WZ1aN18Ybo2DYRtXYM94bTePMcI0fxk/jt/EnZ+bKuWquNqUuL818XhlzI7f/F6sEuHg=</latexit>

The arc-factored model

• Under the arc-factored model, the score of a dependency tree is
expressed as the sum of the scores of its arcs:

• The score of a single arc can be computed by means of a neural
network that receives the head and the dependent as input.
for example, a simple linear layer: score(𝑥, ℎ → 𝑑) = [𝒉 ; 𝒅] · 𝒘 + 𝑏

Оਚ � BSHNBYਚóਁ	ਙ
 ǵਃóਚ TDPSF	ਙ
 ਃ

<latexit sha1_base64="tm50TQM6VpUucVmAinxkWYCG5rE=">AAAFl3icjVRdT9swFA2Mbqz7gu1p2ou1CgmmtGoKonRSNQQIMWkdhVLoVFeVk1xai8TOYqdrF+WX7Zfsca/bn5iddrC2IGEpiXN87vH9sK8deFTIYvHnwuKDpczDR8uPs0+ePnv+YmX15bngUehA0+EeD1s2EeBRBk1JpQetIATi2x5c2Ff7ev1iAKGgnJ3JUQAdn/QYvaQOkQrqrjRxn8h4lCBsVrGJsE9knwcxljCUMQl72PTJMEm68QhhytCX9eGG4orI78YkRbRpShYODyFZH5qIbHRXcsVCMR1ofmJNJjljMurd1aV32OVO5AOTjkeEaFvFQHaUB5I6HiRZHAkIiHNFetBWU0Z8EJ04jT9Bawpx0SUP1cMkStH/LWLiCx2YYuqPyOJT+BrREOqTdW0mAnCS7OxS2+aemxdy5EH1Y+PY1PY3v504YtThLuRT+SwWIH1CmdZrZxFq0O9wCERGIQhURbGCEIo1qv7yO4UtEx0HKkLiTbCdxJziKEre2pxlWdYMzdrMW5VCZY5XmeUpUn6WVS4lipQyP9HetbNn0NLQ58i31fnR3tc440KlFFwl4bkNnQVl1olrlKnDhOoh/5cC2b9fCrZNdKhLVkVjjZpO7xllIxOl8npBQQ0npIEcv2dC2h6ncV5lnwTyNpU7MjwvcAq9yCPhPTSu0z8v0ojs/n0UdGHKpdsUDqgIZtjlUv4u5q176fLelKk2PqoeSDwAp4rFyLcvp66Lrp/k3BOKFoR8QF1wuO8T5uIeHQCLFX4A6p7qa6Luinug+o9PJYSteh3XT4/32lYnrifrG3ESr6ndcQgMvk1rYMaZSP3D77GrBYSKTrkUyqmlcUfSm+o4claSVd3Fmu0l85PzUsHaKlROtnK7e5M+s2y8Md4a64ZllI1d48ioG03DMX4Yv4zfxp/M68yHzGHmaExdXJjYvDKmRubkL9G6vms=</latexit>

head–dependent arc

Computational complexity

• Under the arc-factored model, the highest-scoring dependency
tree can be found in 𝑂(𝑛3) time (𝑛 = sentence length).
Chu–Liu/Edmonds algorithm; McDonald et al. (2005)

• Even seemingly minor extensions of the arc-factored model
entail intractable parsing.
McDonald and Satta (2007)

• For some of these extensions, polynomial-time parsing is
possible for restricted classes of dependency trees.

https://www.aclweb.org/anthology/H05-1066/
https://www.aclweb.org/anthology/W07-2216/

Transition-based dependency parsing

• We cast parsing as a sequence of local classification problems
such that solving these problems builds a dependency tree.

• In most approaches, the number of classifications required for
this is linear in the length of the sentence.

Transition-based dependency parsing

• The parser starts in the initial configuration.
empty dependency graph

• It then calls a classifier, which predicts the transition that the
parser should make to move to a next configuration.
extend the partial dependency tree

• This process is repeated until the parser reaches a terminal
configuration.
complete dependency tree

Training transition-based dependency parsers

• To train a transition-based dependency parser, we need a
treebank with gold-standard dependency trees.

• In addition to that, we need an algorithm that tells us the gold-
standard transition sequence for a tree in that treebank.

• Such an algorithm is conventionally called an oracle.

Comparison of the two parsing paradigms

Graph-based parsing

slow (in practice, cubic in the
length of the sentence)

restricted feature models
(in practice, arc-factored)

features and weights directly
defined on target structures

Transition-based parsing

fast (quasi-linear in the length
of the sentence)

rich feature models
defined on configurations

indirection – features and
weights defined on transitions

