Natural Language Processing

The arc-standard algorithm

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

The arc-standard algorithm

o The arc-standard algorithm is an algorithm for transition-based

dependency parsing.

o It can be viewed as a generalisation of the shift-reduce algorithm

for parsing context-free grammars.

two types of “reduce” actions

» 'The arc-standard algorithm can only predict projective
dependency trees.

Algorithms for non-projective trees exist, see e.g. Nivre (2009).

https://www.aclweb.org/anthology/P09-1040/

Projective dependency trees

O o«—/o:

007

dass Jan Piet Marie lesen helfen sah

Every subtree corresponds to a contiguous sequence of words.

Non-projective dependency trees

O O————0_

O ¢

omdat Jan Piet Marie zag helpen lezen

The sequence of words in a subtree may contain “gaps’.

Transition-based dependency parsing

» 'The parser starts in the initial configuration.

empty dependency tree

o It then calls a classifier, which predicts the transition that the
parser should make to move to a next configuration.

extend the partial dependency tree

« 'This process is repeated until the parser reaches a terminal
configuration.

complete dependency tree

Configurations

A configuration of an arc-standard parser has three parts:

« A buffer, which contains those words in the sentence that still

need to be processed. Initially, the bufter contains all words.

« A stack, which contains t

hose words in the sentence that are

currently being processec

. Initially, the stack is empty.

» A partial dependency tree. Initially, this tree contains all the

words of the sentence, but no dependency arcs.

Transitions

The shift transition (SH) removes the frontmost word from the
buffer and pushes it to the top of the stack.

The left-arc transition (LA) creates a dependency from the
topmost word on the stack to the second-topmost word, and

pops the second-topmost word.

The right-arc transition (RA) creates a dependency from the
second-topmost word on the stack to the topmost word, and

pops the topmost word.

Example run

I wanted to try someplace new

I wanted to try someplace new

stack buffer

(initial configuration)

Example run

I wanted to try someplace new

I wanted to try someplace new

stack buffer

classifier

Example run

I wanted to try someplace new

I wanted to try someplace new

stack buffer

classifier

Example run

Lo

I wanted to try someplace new
I wanted to try someplace new
stack buffer

classifier

Example run

Lo

I wanted to try someplace new

wanted to try someplace new

stack buffer

classifier

Lo

Example run

I wanted to try someplace new
wanted to try someplace new
stack buffer

classifier

Example run

Vol

I wanted to try someplace new

wanted to try someplace new

stack buffer

classifier

Example run

ol

I wanted to try someplace new

wanted try someplace new

stack buffer

classifier

Lo

Example run

L

I wanted to try someplace new
wanted try someplace new
stack buffer

classifier

Example run

S

l

wanted to try someplace new
wanted try someplace new
stack buffer

classifier

ol

Example run

|

l

I wanted to try someplace new
wanted try someplace
stack buffer

classifier

Example run

I I N

I wanted to try someplace new

wanted try

stack buffer

classifier

Example run

I O

I wanted to try someplace new

wanted

stack buffer

(terminal configuration)

Valid transitions

Valid transitions
o SH is valid if the buffer contains at least one word.

« LA and RA are valid if the stack contains at least two words.

Valid transition sequences

are transition sequences in which all transitions are valid

Soundness and completeness

Soundness

Every valid transition sequence that starts in the initial
configuration and ends in some terminal configuration

builds some projective dependency tree.

Completeness

Every projective dependency tree can be built by
some valid transition sequence that starts in the initial

configuration and ends in some terminal configuration.

Non-uniqueness and runtime

Non-uniqueness

One and the same projective dependency tree can in general be

built by several valid transition s

Runtime

The number of transitions that t]

equences.

ne arc-standard algorithm takes

to build a tree for a sentence wit]

h 11 words is 2n — 1.

Features used with the arc-standard algorithm

Features for the classifier can be defined over

» the words in the buffer tfa”}“ion
» the words on the stack FNN
o the partial dependency tree (colcat)
TN
Embed }------- Embed }------- Embed
T T T
buffer 1 stack 1 stack 2

Chen and Manning (2014)

https://www.aclweb.org/anthology/D14-1082/

Static training oracle

» Choose 1A if this would create an arc from the gold-standard

tree, and if all arcs from the second-topmost word on the stack

have already been assigned by the parser.

» Choose ra if this would create an arc from the gold-standard

tree, and if all arcs from the topmost word on the stack have

already been assigned by the parser.

o QOtherwise, choose sH.

must always be valid, unless the tree is non-projective

