
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Neural architectures for dependency parsing

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Learning problems in dependency parsing

• Learning a greedy transition-based dependency parser
amounts to learning the transition classifier.
Chen and Manning (2014), Kiperwasser and Goldberg (2016)

• Learning an arc-factored graph-based dependency parser
amounts to learning the arc scores.
Kiperwasser and Goldberg (2016), Glavaš and Vulić (2021)

https://www.aclweb.org/anthology/D14-1082/
https://www.aclweb.org/anthology/Q16-1023/
https://www.aclweb.org/anthology/Q16-1023/
https://aclanthology.org/2021.eacl-main.270/

Chen and Manning (2014)

• Pre-neural transition classifiers relied on linear
models with hand-crafted combination features.

• C & M propose to replace the linear model with
a two-layer feedforward network (FNN).

• The standard choice for the transfer function is
the rectified linear unit (ReLU).
C & M use the cube function, 𝑓(𝑥) = 𝑥3.

Linear

ReLU

𝒚

𝒙

Linear

feedforward
neural network

I wanted to try someplace new

stack buffer

wanted to try someplace new

FNN

softmax

to try someplace

stack 2 stack 1 buffer 1

scores for the transitions

concat

Embed EmbedEmbed

I wanted to try someplace new

stack buffer

wanted try someplace new

FNN

softmax

wanted try someplace

stack 2 stack 1 buffer 1

scores for the transitions

concat

Embed EmbedEmbed

Chen and Manning (2014) – Features

• C & M embed the top 3 words on the stack and buffer, as well as
certain descendants of the top words on the stack.

• In addition to word embeddings, they also use embeddings for
part-of-speech tags and dependency labels.

Chen and Manning (2014) – Training

• To train their parser, C & M minimise cross-entropy loss relative
to the gold-standard action, plus an L2 regularisation term.

• To generate training examples for the transition classifier, they
use the static oracle for the arc-standard algorithm.
can be generated off-line

Parsing accuracy

UAS LAS

Baseline, transition-based 89.4 87.3

Baseline, graph-based 90.7 87.6

Chen and Manning (2014) 91.8 89.6

Weiss et al. (2015) 93.2 91.2

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies

https://www.aclweb.org/anthology/P15-1032/

Kiperwasser and Goldberg (2016)

• The neural parser of C & M learns useful feature combinations,
but the need to carefully design the core features remains.

• K & G propose to use a minimal set of core features based on
contextualised embeddings obtained from a Bi-LSTM.
Bi-LSTM is trained with the rest of the parser.

• They show that this approach gives state-of-the-art accuracy both
for transition-based and for graph-based parsing.

I wanted to try someplace new

stack buffer

wanted to try someplace new

Bi-LSTM

Embed

concat

FNN

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Embed Embed Embed Embed Embed

I wanted to try someplace new

𝒗1 𝒗2 𝒗3 𝒗4 𝒗5 𝒗6

stack 2 stack 1 buffer 1

scores for the transitions

I wanted to try someplace new

stack buffer

wanted try someplace new

Bi-LSTM

Embed

concat

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Embed Embed Embed Embed Embed

I wanted to try someplace new

𝒗1 𝒗2 𝒗3 𝒗4 𝒗5 𝒗6

stack 2 stack 1 buffer 1

FNN scores for the transitions

Features and training (transition-based parser)

• For their transition-based parser, K & G embed the top 3 words
on the stack, as well as the first word in the buffer.
both word and part-of-speech tag

• In contrast to C & M, they use a dynamic oracle, so they cannot
generate training examples in an off-line fashion.

I wanted to try someplace new

Bi-LSTM

Embed

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Embed Embed Embed Embed Embed

I wanted to try someplace new

concat

𝒗3 𝒗4𝒗1 𝒗2 𝒗5 𝒗6

FNN score for the arc

dependent head

I wanted to try someplace new

Bi-LSTM

Embed

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Embed Embed Embed Embed Embed

I wanted to try someplace new

𝒗3𝒗1 𝒗2 𝒗6

concat

𝒗4 𝒗5

head dependent

FNN score for the arc

Features and training (graph-based parser)

• For their graph-based parser, K & G embed the head and
dependent of each arc.
both word and part-of-speech tag

• The training objective is to maximise the margin between the
score of the gold tree 𝑦* and the highest-scoring incorrect tree 𝑦:৴	ଔ
 � NBYʐ�
 � �NBYਚăਚø TDPSF	ਙ
 ਚ
 ÷ TDPSF	ਙ
 ਚø
ʞ

<latexit sha1_base64="+Zb7tPxB1fIvYcgJ++iUIicqQ6c=">AAAFrXicjVRdT9swFE0Z3Vj3BdvjXqxVSC1LuwYQH5MqIUBok2BklAJSXZCTXIpFYgfbYXRRfuQe90v2OjvtYG1BwlIS59xzj6/vta8Xh1SqRuN3YerJdPHps5nnpRcvX71+Mzv39kjyRPjQ9nnIxYlHJISUQVtRFcJJLIBEXgjH3uWWsR9fg5CUs0PVj6EbkR6j59QnSkNns5e7FXwNforVBSiSVRG2m9hGOCI3CHu0F1ZQw0YO+phDZ2kfYQZXqH+6kCGs4Eal0ucCssqNjfpVVJsETxequZKons2WG/VGPtDkxBlOytZwuGdz0ws44H4SAVN+SKTsOI1YdVMiFPVDyEo4kRAT/5L0oKOnjEQgu2melQzNayRA51zohymUo/97pCSSEVEXmmk+soQP4CqhAtyh3bjJGPysNG7qeDwMalL1Q2h+be3bxv/ut5smjPo8gFouX8ISVEQoM3qdEkIt+hN2gKhEgERNlGoIodSg+q+2Vl+20X6sd0jCIbaW2SMcTak5S+MsxxmjOUs1Z72+PsFbH+dpUm2ctbqYaVLO3KW922AP4cRA35LI06fKRL/HGZc6pRBoiTBomSxot266R5k+YsgV/F8K1MXjUrBiox1TsiYaaOyZ9B5S1rdRLm8MGmr5gsZq8B7b0sogjZMqWyRW96k8kOFJgQPoJSERj9C4Tf+kSCvxLh6jYAqzunifwjaV8Rh7dbH2EPPetUx578q0NziqISjTD5pY9iPvfOS6mPopzkOpabHg1zQAn0cRYQHu0Wtgqca3Qd9Tc030XQm2dVeKqAJx4rrYPdjf7Djd1M0q1TRL5/XqWACDH6MamHEm8/jwZxwYAal3p0MSasRkguGxWdTso+xkJd1dnPFeMjk5Wqw7y/X178vljc1hn5mx3lsfrIrlWKvWhvXFcq225Vu/rD8Fq1Aofiq2i7h4OqBOFYY+76yRUez9BfBGwZA=</latexit>

Parsing accuracy

UAS LAS

Chen and Manning (2014) 91.8 89.6

Weiss et al. (2015) 93.2 91.2

K & G (2016), graph-based 93.0 90.9

K & G (2016), transition-based 93.6 91.5

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies

Glavaš and Vulić (2021)

• G & V adopt the basic architecture of K & G but use a BERT
encoder instead of a Bi-LSTM.
requires word-level average pooling of token representations

• The arc scores are computed using a bi-affine layer:
<latexit sha1_base64="WKW75ax5UuKj4l+rgeP0iwRzsII=">AAAFkXicjVRtT9swEA4b3Vj3BuPjvlirkGBLq6aglk6qhAChTVvXjPJSqekqJzmKIbGz2Cl0UX7Wfsy0r9v/mN1mQFOQsNTGfu65x+c7n+3AI1yUy7/mHjyczz16vPAk//TZ8xcvF5deHXEWhQ4cOsxjYcfGHDxC4VAQ4UEnCAH7tgfH9vmOsh8PIeSE0QMxCqDn4wElJ8TBQkL9xZYl4FLE3GEhJKuXOiLIEgydrSFLb1g6sobgxBdJX8Lp4jhBN/Czb5IeoHcTwE76i4VyqTweaHZipJOClg6zvzT/1nKZE/lAheNhzrtGORC9GIeCOB4keSviEGDnHA+gK6cU+8B78fjkCVqRiItOWCh/VKAxetMjxj73sTiVTPXheWsfvkckBDO1KzcegJPks6auzTy3yMXIg8bHdktX/tfLXhxR4jAXimP5vMVB+JhQpdfNI9QmP2APsIhC4KiBYgkhFCtUroqbpQ0dtQJ5Quyl2GaiT3EkpWisZ1mGkaEZ60WjXqrP8OpZniQVs6xaJZGkMfMzGVwFewAdBX2JfFveHBV9k1HGZUrBlRKe21ZZkG69uEmovEbIDNn/FIjT+6WgqqM9VbIGmmg0VXoPCB3paCyvDBJqOyEJxOQ/c6TqJI2zKjs4ELep3JHhWYF9GEQeDu+hcZX+WZF2ZJ/eR0EVpla5TWGX8CDDrlWKdzFv3UuV97pMzclV9UCobm1YfOTbJ1PtouonGPO4pAUhGxIXHOb7mLrWgAyBxhLfBdmnqk1kr7i78uXxiYCwY5qWud/a7hq92ExW1+IkXpG7WyFQuJjWsCijfByf9d5ylQCXp5MhhWLKpIJhgdpUnaNgJHn5uhjZt2R2clQpGdVS9etGYWs7fWcWtNfaG21VM7SatqV90EztUHO0n9pv7Y/2N7ecq+e2cin3wVzqs6xNjdynf6nquqU=</latexit>

score(𝑥, 𝑖 → 𝑗) = 𝒘𝑖𝑾𝒘⊤𝑗 + 𝒃

I liked the place

FFN

MHA

FFN FFN FFN FFN FFN

MHA MHA MHA MHA MHA

[CLS] I lik ##ed the place

𝒗21𝒗0

𝒗1

𝒗4𝒗22 𝒗3

dependent head

Biaffine score for the arc liked → I

mean

𝒗2

BERT

Pooling

