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Learning problems in dependency parsing

• Learning a greedy transition-based dependency parser  
amounts to learning the transition classifier. 
Chen and Manning (2014), Kiperwasser and Goldberg (2016) 

• Learning an arc-factored graph-based dependency parser 
amounts to learning the arc scores. 
Kiperwasser and Goldberg (2016), Glavaš and Vulić (2021)

https://www.aclweb.org/anthology/D14-1082/
https://www.aclweb.org/anthology/Q16-1023/
https://www.aclweb.org/anthology/Q16-1023/
https://aclanthology.org/2021.eacl-main.270/


Chen and Manning (2014)

• Pre-neural transition classifiers relied on linear 
models with hand-crafted combination features. 

• C & M propose to replace the linear model with 
a two-layer feedforward network (FNN). 

• The standard choice for the transfer function is 
the rectified linear unit (ReLU). 
C & M use the cube function, 𝑓(𝑥) = 𝑥3.
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Chen and Manning (2014) – Features

• C & M embed the top 3 words on the stack and buffer, as well as 
certain descendants of the top words on the stack. 

• In addition to word embeddings, they also use embeddings for 
part-of-speech tags and dependency labels.



Chen and Manning (2014) – Training

• To train their parser, C & M minimise cross-entropy loss relative 
to the gold-standard action, plus an L2 regularisation term. 

• To generate training examples for the transition classifier, they 
use the static oracle for the arc-standard algorithm. 
can be generated off-line



Parsing accuracy

UAS LAS

Baseline, transition-based 89.4 87.3

Baseline, graph-based 90.7 87.6

Chen and Manning (2014) 91.8 89.6

Weiss et al. (2015) 93.2 91.2

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies

https://www.aclweb.org/anthology/P15-1032/


Kiperwasser and Goldberg (2016)

• The neural parser of C & M learns useful feature combinations, 
but the need to carefully design the core features remains. 

• K & G propose to use a minimal set of core features based on 
contextualised embeddings obtained from a Bi-LSTM. 
Bi-LSTM is trained with the rest of the parser. 

• They show that this approach gives state-of-the-art accuracy both 
for transition-based and for graph-based parsing.
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Features and training (transition-based parser)

• For their transition-based parser, K & G embed the top 3 words 
on the stack, as well as the first word in the buffer. 
both word and part-of-speech tag 

• In contrast to C & M, they use a dynamic oracle, so they cannot 
generate training examples in an off-line fashion.
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Features and training (graph-based parser)

• For their graph-based parser, K & G embed the head and 
dependent of each arc. 
both word and part-of-speech tag 

• The training objective is to maximise the margin between the 
score of the gold tree 𝑦* and the highest-scoring incorrect tree 𝑦:৴	ଔ
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Parsing accuracy

UAS LAS

Chen and Manning (2014) 91.8 89.6

Weiss et al. (2015) 93.2 91.2

K & G (2016), graph-based 93.0 90.9

K & G (2016), transition-based 93.6 91.5

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies



Glavaš and Vulić (2021)

• G & V adopt the basic architecture of K & G but use a BERT 
encoder instead of a Bi-LSTM. 
requires word-level average pooling of token representations 

• The arc scores are computed using a bi-affine layer:
<latexit sha1_base64="WKW75ax5UuKj4l+rgeP0iwRzsII="></latexit>

score(𝑥, 𝑖 → 𝑗) = 𝒘𝑖𝑾𝒘⊤𝑗 + 𝒃
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