729G86/TDP030 Language Technology (VT2025)

Sequence Labelling

Marcel Bollmann

Department of Computer and Information Science (IDA)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Adapted from slides by Marco Kuhlmann.

Today's lecture

- 1. Introduction & Tasks
 - Part-of-Speech Tagging
 - Named Entity Recognition
 - Word Segmentation
- 2. Evaluation
 - POS Tagging
 - Span-Level Metrics for NER

- 3. Perceptrons
 - Features
 - Weights
 - Tagging
- 4. Outlook: Neural Networks

1

What is Sequence Labelling? Introduction & Tasks

Sequence Labelling > Introduction & Tasks

Sequence labelling

• Previously...

Text classification is the task of categorizing **text documents** into predefined classes.

🥕 Definition

Sequence labelling is the task of annotating **each item in a sequence** with predefined labels.

• "Items in a sequence" can be e.g. words in a sentence

Part-of-speech tagging

jumped The quick brown fox over the lazv dog . NOUN DET ADJ ADJ VERB ADP DET ADJ NOUN PUNCT

- A **part of speech** is a category of words that play similar roles within the syntactic structure of a sentence.
- Common parts of speech are **noun**, **verb**, or **adjective**.

Universal part-of-speech tagset

Tag	Category	Examples
ADJ	adjective	brown, old,
ADV	adverb	quickly, ver
INTJ	interjection	ouch, hello
NOUN	noun	dog, car, ho
PRON	pronoun	you, her, the
PROPN	proper noun	Maria, Berl
VERB	verb	writes, jum _l
PUNCT	punctuation	.,:;!?

big y use eirs lin, IBM ped

Tag	Category
ADP	adposition
AUX	auxiliary
CCONJ	coord. conjunction
SCONJ	subord. conjunction
DET	determiner
NUM	numeral
PART	particle
SYM	symbol

Examples

of, in, to has, is, will and, or, but that, while a, an, the 42, fifteen 's, not **\$€:)**

Source and more details: 🗹 Universal POS tags

Part-of-speech tagging

🖍 Definition

Part-of-speech (POS) tagging is the task of tagging each word in a sentence with its part of speech.

- There are many different tagsets for part-of-speech tagging.
 - Different levels of granularity, or tailored to different languages.
 - "Universal POS tagset" = universally applicable across languages, not "universally used"!
- This can be framed as a supervised machine learning problem.

Ambiguity causes combinatorial explosion

The	quick	brown	fox	jumped	over	the	lazy	dog	
DET	ADJ	ADJ	NOUN	VERB	ADP	DET	ADJ	NOUN	PUNCT
	ADV	NOUN	VERB		ADJ			VERB	
	NOUN	VERB			ADV				

Named entity recognition

🖍 Definition

Named entity recognition (NER) is the task of identifying named entities and labelling them with their type.

Source: Wikipedia

Sequence Labelling > Introduction & Tasks > Named Entity Recognition

Named entity recognition as sequence labelling

Word-level tags can encode both the **boundaries** and **types** of named entities.

• A common encoding scheme that implements this idea is **BIO notation**:

Taco Bell is an American - based chain of fast food restaurants 0 **B-ORG I-ORG** 0 0 **B-NAT** Ω 0 Ω Ω Ω founded in 1962 by Glen Bell in Irvine , California . B-DATE O B-PER I-PER O B-LOC I-LOC Π 1-1 OC beginning of inside of outside of "person" entity "person" entity an entity

Chinese word segmentation

"He briefed reporters on the main contents"

Sequence Labelling > Introduction & Tasks > Word Segmentation

Important concepts

- part-of-speech (POS) tagging
- named entity recognition (NER)
- BIO notation

Evaluation of Sequence Labelling

Sequence Labelling > Evaluation

Reminder: Evaluation of text classifiers

Evaluation of part-of-speech taggers

Accuracy

		DET	ADJ	NOUN	ADP	VERB
	DET	923	0	0	0	1
lard	ADJ	2	1255	132	1	5
l-stand	NOUN	0	7	4499	1	18
gold	ADP	0	0	0	2332	1
	VERB	0	5	132	2	3436

predicted

 $\frac{12445}{12752} = 97.59\%$

Sequence Labelling > Evaluation > POS Tagging

Precision with respect to NOUN

		productou					
		DET	ADJ	NOUN	ADP	VERB	
	DET	923	0	0	0	1	
	ADJ	2	1255	132	1	5	
	NOUN	0	7	4499	1	18	
2	ADP	0	0	0	2332	1	
	VERB	0	5	132	2	3436	

predicted

 $\frac{4499}{4763} = 94.46\%$

Sequence Labelling > Evaluation > POS Tagging

Recall with respect to NOUN

		predicted					
		DET	ADJ	NOUN	ADP	VERB	
	DET	923	0	0	0	1	
	ADJ	2	1255	132	1	5	
ľ	NOUN	0	7	4499	1	18	
	ADP	0	0	0	2332	1	
,	VERB	0	5	132	2	3436	

$$\frac{4499}{4525} = 99.43\%$$

Sequence Labelling > Evaluation > POS Tagging

Evaluation of named entity recognizers

Problems with standard metrics for NER

- The O tag is the most frequent one, but also the one we care least about.
 - \rightarrow makes accuracy a bad choice here
- B-* and I-* tags always belong together.
 - \rightarrow doesn't make sense to compute precision/recall separately for them

Converting tags into spans

Reminder: Precision and recall with two classes

precision =
$$\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false positives}}$$

recall =
$$\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false negatives}}$$

Sequence Labelling > Evaluation > Span-Level Metrics for NER

Span-level precision/recall for NER

Important concepts

- accuracy, precision, recall, F1-score
- span-level precision and recall (for NER)

Sequence Labelling with Perceptrons

Sequence Labelling > Perceptrons

Sequence labelling as classification

- We can treat sequence labelling as a classification problem.
 - one classification per word in the sentence
 - similar to what we did for text classification!
- The multi-class perceptron is a very simple, non-probabilistic classifier.
 - a very simple type of neural network

The classical perceptron

A perceptron is a **linear model** with a **decision rule**.

The multi-class perceptron

A multi-class perceptron uses a different decision rule to predict multiple classes.

The multi-class perceptron, formally

- The feature vector is the input this is how the perceptron "sees" the data.
- The weight vector is a model parameter this is what the perceptron "learns."

Feature vectors

$$f(\mathbf{x}) = \arg\max_{c} \mathbf{x} \mathbf{w}_{c}$$

- Each dimension of *x* corresponds to one feature.
 - *Example:* "the word form of the current token is 'films"
- Which features to extract from the data is a decision that we have to make!

What can go in a feature vector?

- Features can be any information that can be derived from the input sentence or any previously predicted labels.
 - *Example:* the word form of the current token
 - *Example*: the part-of-speech tag of the previous token
- This means we can look further back or even look ahead.
- At the same time, using too much information can lead to problems.
 - efficiency, data sparseness

Feature windows

• A compromise is to define a limited feature window, for example of 1:

• Here we can use the previous word, current word, next word, and the previous tag.

Feature windows

• The feature window **moves forward** during tagging:

Examples of features in part-of-speech tagging

- word form (lowercased) of the current token
- word form of the preceding/next token
- capitalization of the current token (upper, lower, n/a)
- type of the current token (digits, letters, symbols)

- prefixes and suffixes of the current token (of various length)
- whether the current token is hyphenated
- whether the token is first or last in the sentence
- various combinations of the other features

Source: Östling (2013)

Chocolate box challenge!

Sequence Labelling > Perceptrons > Features

Weight vectors

- The dimensions of *w_c* correspond to the importance of that feature for the class *c*.
- If $w_{c,i} > 0$, the feature x_i does belong to class *c*.
- If $w_{c,i} < 0$, the feature x_i does not belong to class c.
 - We assume that feature values x_i are always non-negative.

Inspiration from neurobiology

- Features whose weights are positive **increase the activation** of the neuron.
- Features whose weights are negative decrease the activation of the neuron.
- Features whose weights are zero **do not contribute** anything to the activation of the neuron.

Part-of-speech tagging with a perceptron

• We tag our sentence **from left to right**, picking the highest-scoring tag.

Part-of-speech tagging with a perceptron

• Note that the scores are **not probabilities** anymore!

Part-of-speech tagging with a perceptron

• Continue until the end of the sequence.

Important concepts

- (multi-class) perceptron
- feature vector
- feature window

Outlook: Neural Networks

Sequence Labelling > Outlook: Neural Networks

State of the art

- Like most language technology applications, the current state-of-the-art models for sequence labelling rely on artificial neural networks.
- Perceptrons are the "simplest" form of neural networks.
 - ANNs add a **non-linear activation function** e.g. $tanh(xw_c)$ instead of just xw_c .
 - ANNs **chain multiple "neurons" together**, so that the output of one becomes the input of another.

