
729G86/TDP030 Language Technology

Language Modelling with n-grams

Marcel Bollmann

Department of Computer Science (IDA)

https://liu-nlp.ai/lang-tech/

Language modelling in a nutshell

• What is the probability of a sentence?

𝑃(‘I like horror movies’) > 𝑃(‘like horror movies I’)

𝑃(‘Sweden is a country in Europe’) > 𝑃(‘Sweden is a country in Asia’)

𝑃(‘He is drinking coffee’) > 𝑃(‘He is drinking corn flakes’)

• What is the conditional probability of a word given context?

𝑃(‘Europe’ | ‘Sweden is a country in’)

Language Modelling 1

These two formulations are equivalent!

Example: Predictive typing

• Predict the next word given the

words that were already typed.

arg max
𝑤∈𝑉

𝑃(𝑤 | ‘That sounds’)

Language Modelling 2

Via Microsoft SwiftKey

Example: Grammar correction

• Grammatical mistakes should

result in lower probabilities.

𝑃(‘less projects’) < 𝑃(‘fewer projects’)

Language Modelling 3

Source: Grammarly

https://www.grammarly.com/features

Language modelling is behind all AI assistants

Language Modelling 4

Outline

 𝑛-gram Models

• 𝑛-grams

• Markov Models

• Applications

 Training

• Maximum Likelihood

Estimation

• Smoothing

• Out-of-Vocabulary Tokens

 Evaluation

• Intrinsic vs. Extrinsic

• Entropy

• Perplexity

Language Modelling 5

𝑛-gram Language Models

What are 𝑛-grams?

 Definition

An 𝑛-gram is a sequence of 𝑛 consecutive tokens.

• We commonly use these terms for 𝑛 ∈ (1, 2, 3):

𝑛 = 1 Unigram ["this"]

𝑛 = 2 Bigram ["this", "sounds"]

𝑛 = 3 Trigram ["this", "sounds", "great"]

• For 𝑛 > 3, we would usually speak of 4-grams, 5-grams, etc.

Language Modelling  𝑛-gram Models  𝑛-grams 7

Language modelling with 𝑛-grams

• An 𝑛-gram language model defines a probability distribution over

sequences of 𝑛 tokens.

𝑃(𝑤1⋯𝑤𝑛)

• We often look at the conditional probability of seeing the last word

in an 𝑛-gram given the previous words.

𝑃(𝑤𝑛 | 𝑤1⋯𝑤𝑛−1)

• 𝑛 is also called the order of the language model.

Language Modelling  𝑛-gram Models  𝑛-grams 8

Unigram models

• A unigram language model is just a bag-of-words model.

– bag-of-words: the order of words doesn’t matter

𝑃(𝑤1⋯𝑤𝑚) = ∏
𝑚

𝑖=1
𝑃(𝑤𝑖)

• Here, the probabilities of each word are mutually independent.

Language Modelling  𝑛-gram Models  𝑛-grams 9

 Markov Assumption

The probability of word 𝑤𝑛 only depends on the 𝑛 − 1 previous words.

– For 𝑛 = 2, the probability of “great” only depends on “sounds”:

I think this sounds great

• To compute the probability of a longer sequence, we multiply the conditional

probabilities of subsequent 𝑛-grams:

𝑃(‘think’ | ‘I’) × 𝑃(‘this’ | ‘think’) × 𝑃(‘sounds’ | ‘this’) × 𝑃(‘great’ | ‘sounds’)

Language Modelling  𝑛-gram Models  Markov Models 10

Marking sentence boundaries

BOS I think this sounds great EOS

• For a well-defined model, we also need to mark the sentence boundaries.

– e.g. we can’t define a probability for the first word otherwise

𝑃(‘I’ | BOS) × 𝑃(‘think’ | ‘I’) × … × 𝑃(‘great’ | ‘sounds’) × 𝑃(EOS | ‘great’)

beginning-of-sequence end-of-sequence

Language Modelling  𝑛-gram Models  Markov Models 11

Bigram models

• A bigram language model is a Markov model on word sequences.

𝑃(𝑤1⋯𝑤𝑚) = 𝑃(𝑤1 | BOS) × (∏
𝑚

𝑖=2
𝑃(𝑤𝑖 | 𝑤𝑖−1)) × 𝑃(EOS | 𝑤𝑚)

𝑃(𝑠1⋯𝑠𝑘) = ∏
𝑘

𝑖=2
𝑃(𝑤𝑖 | 𝑤𝑖−1)

sequence including BOS and EOS

• The probability of each word depends only on the word before it.

– That’s the Markov property.

Language Modelling  𝑛-gram Models  Markov Models 12

𝑛-gram models

BOS BOS BOS I think this sounds great EOS

• In general, the input sequence must be padded with 𝑛 − 1 BOS tokens.

– Note that it’s always enough to have one EOS token!

• We can then define an 𝑛-gram language model for arbitrary 𝑛:

𝑃(𝑠1⋯𝑠𝑘) = ∏
𝑘

𝑖=𝑛
𝑃(𝑠𝑖 | 𝑠𝑖−(𝑛−1)⋯𝑠𝑖−1)

sequence including BOS and EOS 𝑛 − 1 preceding words

Language Modelling  𝑛-gram Models  Markov Models 13

Predictive typing with 𝑛-gram models

• To predict the next word, we can choose

the word with the highest probability

from our vocabulary:

arg max
𝑤∈𝑉

𝑃(𝑤 | ‘That sounds’)

vocabulary =
set of all possible words

Language Modelling  𝑛-gram Models  Applications 14

Via Microsoft SwiftKey

Generating text from 𝑛-gram models

• We can generate new text by sampling from the vocabulary.

– “sampling”: picking words based on their probability in the language model

– Without further conditioning, this does not produce meaningful text…

to him at the chamber at his best, and my words brought a

newspaper i expect, will reallocate resources, and which analysis

alone can bring one of those categories.

Text sampled from a small English trigram model

Language Modelling  𝑛-gram Models  Applications 15

Limitations of 𝑛-gram models

• 𝑛-gram models are easy to understand and train, and can be useful tools!

• They are also very limited when it comes to long-range dependencies.

𝑃(‘Sweden is a country in Europe’)

𝑃(‘Sweden has a population of 10.6 million and its capital is Stockholm’)

Language Modelling  𝑛-gram Models  Applications 16

 Important Concepts

• language modelling

• 𝑛-grams, unigrams, bigrams, trigrams

• Markov assumption

• sentence boundary markers (BOS, EOS)

Language Modelling  𝑛-gram Models  Important Concepts 17

Training 𝑛-gram Language Models

Reminder: General machine learning methodology

Model
Predicted

Outputs
Inputs

True

Outputs

Training data

Learning algorithm

Language Modelling  Training 19

Maximum likelihood estimation

• We can use maximum likelihood estimation (MLE)

to obtain probabilities for 𝑛-gram language models.

• For unigram models, this simply means counting

the tokens.

𝑃(‘sounds’) =
#(‘sounds’)

𝑁

𝑁 = ∑
𝑤∈𝑉

#(𝑤)

total number of tokens

⋮ ⋮

sound 49

soundcard 1

sounding 2

sounds 22

soup 4

sour 1

source 62

⋮ ⋮

Language Modelling  Training  Maximum Likelihood Estimation 20

MLE for bigram models

• For bigram models, we need conditional probabilities.

𝑃(‘good’ | ‘sounds’) =
#(‘sounds good’)

∑𝑤∈𝑉 #(‘sounds’ + 𝑤)

total number of bigrams starting with “sounds”

sounds familiar 1

sounds good 3

sounds like 14

sounds off 1

sounds on 1

sounds so 1

Language Modelling  Training  Maximum Likelihood Estimation 21

MLE for 𝑛-gram models

• We can simplify the equation a bit:

𝑃(‘good’ | ‘sounds’) =
#(‘sounds good’)

∑𝑤∈𝑉 #(‘sounds’ + 𝑤)
=

#(‘sounds good’)
#(‘sounds’)

do you see why?

• We can perform MLE for any value of 𝑛:

𝑃(𝑤𝑛 | 𝑤1⋯𝑤𝑛−1) =
#(𝑤1⋯𝑤𝑛)

#(𝑤1⋯𝑤𝑛−1)

Language Modelling  Training  Maximum Likelihood Estimation 22

A problem with maximum likelihood estimation

• If an 𝑛-gram never occurred in the training data, we get a probability of zero.

𝑃(‘amazing’ | ‘sounds’) =
#(‘sounds amazing’)

#(‘sounds’)
=

0
22

= 0

• Under a Markov model, each sentence containing this 𝑛-gram will receive

a total probability of zero, regardless of the rest of the sentence!

𝑃(‘I would love to see this happen because it sounds amazing’) = 0

Language Modelling  Training  Smoothing 23

Unseen 𝑛-grams in practice

• Shakespeare’s collected works contain

ca. 31,000 unique words (= types).

• There are 961 million possible

bigrams with these words.

310002 = 961000000

• Shakespeare’s collected works contain

ca. 300,000 unique bigrams.

• This means that 99.97% of all

possible bigrams occur zero times.

1 −
300000

961000000
≈ 0.99968

Language Modelling  Training  Smoothing 24

Additive (add-𝑘) smoothing

• We can use add-𝑘 smoothing to ensure the probability is never zero.

𝑃(𝑤 | 𝑢) =
#(𝑢𝑤) + 𝑘

#(𝑢) + 𝑘 ⋅ |𝑉|

the size of the vocabulary

– For arbitrary 𝑛:

𝑃(𝑤𝑛 | 𝑤1⋯𝑤𝑛−1) =
#(𝑤1⋯𝑤𝑛) + 𝑘

#(𝑤1⋯𝑤𝑛−1) + 𝑘 ⋅ |𝑉|

– 𝑘 can be any positive number, i.e. 𝑘 ∈ ℝ>0

– If 𝑘 = 1, this is also called Laplace smoothing.

Language Modelling  Training  Smoothing 25

Additive smoothing and the probability mass

• We only have a constant amount of probability mass to distribute.

– Probabilities must always sum up to 1.

• Additive smoothing…

– subtracts probability from actually observed 𝑛-grams, then

– redistributes it equally among all possible 𝑛-grams.

• There are more sophisticated smoothing techniques for language modelling

(but we won’t look at them).

– Witten–Bell smoothing, Kneser–Ney smoothing

Language Modelling  Training  Smoothing 26

Redistributing the probability mass

• Let’s consider a toy example.

– vocabulary:

{awesome, great, sounds, that}

– training data: [that sounds great]

awesome great sounds that

0
3

1
3

1
3

1
3

0.00 0.33 0.33 0.33

• After smoothing (with 𝑘 = 1), each

observation loses ca. 14% of its

original probability.

awesome great sounds that

1
7

2
7

2
7

2
7

0.14 0.29 0.29 0.29

Language Modelling  Training  Smoothing 27

A problem that smoothing cannot solve…

• Smoothing helps with unseen 𝑛-grams.

– combinations of tokens that didn’t occur in the training data

• Smoothing does not help with out-of-vocabulary tokens!

One ecological change dams bring to rivers is caused by something

called hydropeaking.

Source: New York Times, 02.08.2022

• Remember: We always need a fixed (and finite) vocabulary.

Language Modelling  Training  Out-of-Vocabulary Tokens 28

https://www.nytimes.com/2022/08/02/science/yellowstone-flooding.html

Out-of-vocabulary tokens

• One solution is to introduce an UNK symbol for “unknown” words.

One ecological change dams bring to rivers is caused by something

called UNK.

• During training, we replace very rare tokens with UNK.

– e.g. all tokens occuring only a single time

– This makes the model learn probabilities for UNK.

• During testing, we replace all out-of-vocabulary tokens with UNK.

Language Modelling  Training  Out-of-Vocabulary Tokens 29

 Important Concepts

• maxixum likelihood estimation

• additive (add-𝑘) smoothing

• out-of-vocabulary words, UNK token

Language Modelling  Training  Important Concepts 30

Evaluation of Language Models

Intrinsic and extrinsic evaluation

1 Intrinsic evaluation: How does the model score on evaluation metrics?

– In classification, we used accuracy, precision, recall, F1-score.

– In language modelling, these are not very meaningful.

2 Extrinsic evaluation: How much does it help on a downstream task?

– “downstream” ≈ anything we want to use the model for

– e.g. How good is a grammatical error detector when using this language model?

– We use the evaluation metric of the downstream task.

Language Modelling  Evaluation  Intrinsic vs. Extrinsic 32

From probabilities to surprisal

• Instead of (raw) probabilities, we often work with negative log-probabilities.

− log 𝑃(𝑤1⋯𝑤𝑁)

• Intuitively, this measures the surprisal of observing the sentence.

– high probability = low negative log-probability = low surprisal

 Definition

The entropy of a language model is its average surprisal per token.

𝐻(𝑤1⋯𝑤𝑁) = −
1
𝑁

log 𝑃(𝑤1⋯𝑤𝑁)

Language Modelling  Evaluation  Entropy 33

Negative log-probabilities

0.0 0.2 0.4 0.6 0.8 1.0
𝑃

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

−
lo

g
𝑃

Language Modelling  Evaluation  Entropy 34

Perplexity

 Definition

The perplexity of a language model is its exponentiated entropy.

PPL(𝑥) = 2𝐻(𝑥) = 2− 1
𝑁 log2 𝑃(𝑥)

• Perplexity is one of the standard metrics for evaluating language models.

• Intuitively, if the perplexity on a sentence is 𝑦, the model is “as surprised” as if it

had to, on average, pick between 𝑦 tokens with equal probability.

Language Modelling  Evaluation  Perplexity 35

Entropy vs. perplexity

Entropy
Perplexity

0.0 0.2 0.4 0.6 0.8 1.0
𝑃

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Language Modelling  Evaluation  Perplexity 36

Interpreting perplexity values

• Typically, perplexity is a value between 1 and |𝑉|.
– PPL(𝑥) = 1 ⟶ text can be predicted perfectly

– PPL(𝑥) = |𝑉| ⟶ like randomly guessing from the entire vocabulary

• In practice, the absolute perplexity value depends on the vocabulary.

– larger vocabulary = higher uncertainty for each token = higher perplexity

 Caution

Comparing two language models with perplexity only makes sense

if both models use the same vocabulary!

Language Modelling  Evaluation  Perplexity 37

 Important Concepts

• intrinsic vs. extrinsic evaluation

• negative log probabilities

• entropy, perplexity, and how to interpret them

Language Modelling  Evaluation  Important Concepts 38

	Language modelling in a nutshell
	Example: Predictive typing
	Example: Grammar correction
	Language modelling is behind all AI assistants
	
	n-grams
	What are n-grams?
	Language modelling with n-grams
	Unigram models

	Markov Models
	
	Marking sentence boundaries
	Bigram models
	n-gram models

	Applications
	Predictive typing with n-gram models
	Generating text from n-gram models
	Limitations of n-gram models

	
	Reminder: General machine learning methodology
	Maximum Likelihood Estimation
	Maximum likelihood estimation
	MLE for bigram models
	MLE for n-gram models

	Smoothing
	A problem with maximum likelihood estimation
	Unseen n-grams in practice
	Additive (add-k) smoothing
	Additive smoothing and the probability mass
	Redistributing the probability mass

	Out-of-Vocabulary Tokens
	A problem that smoothing cannot solve…
	Out-of-vocabulary tokens

	
	Intrinsic vs. Extrinsic
	Intrinsic and extrinsic evaluation

	Entropy
	From probabilities to surprisal
	Negative log-probabilities

	Perplexity
	Perplexity
	Entropy vs. perplexity
	Interpreting perplexity values

