729G86/TDP030 Language Technology

Language Modelling with n-grams

Marcel Bollmann

Department of Computer Science (IDA)

LINKOPING
UNIVERSITY

https://liu-nlp.ai/lang-tech/

Language modelling in a nutshell

« What is the probability of a sentence?

P(°I like horror movies’) > P(‘like horror movies I’)
P(‘Sweden is a country in Europe’) > P(‘Sweden is a country in Asia’)

P(‘He is drinking coffee’) > P(‘He is drinking corn flakes’)

« What is the conditional probability of a word given context?
P(‘Europe’ | ‘Sweden is a country in’)

These two formulations are equivalent!

Language Modelling 1

Example: Predictive typing

@9 That sounds| + e

« Predict the next word given the
words that were already typed.

arg max P(w | ‘That sounds’)
weV

Via Microsoft SwiftKey
Language Modelling 2

Example: Grammar correction

Our team has less projects this quarter.

« Grammatical mistakes should
result in lower probabilities.

(N\
® Grammar

less — REVES

It appears that the quantifier less does not fit with
the countable noun projects. Consider changing
the quantifier or the noun.

P(‘less projects’) < P(‘fewer projects’)

_ J

©

Source: Grammarly

Language Modelling 3

https://www.grammarly.com/features

Language modelling is behind all Al assistants

Ask anything

0 Attach @ search

Surprise me

Ask Gemini

+ Deep Research

Language Modelling

ChatGPT

Help me write

Hello, Marcel

Canvas

Image

Brainstorm

(3) Summarize text

More

(=

Hi there. What should we dive into
today?

Message Copilot

ﬁ Quick response v

% Evening, Marcel

How can | help you today?

+ = Claude Sonnet 4

Upgrade to connect your tools to Claude cTe >

Outline

B n-gram Models 8 Evaluation
e n-grams e Intrinsic vs. Extrinsic
« Markov Models « Entropy
 Applications Perplexity

8 Training

e Maximum Likelihood
Estimation

« Smoothing

« Out-of-Vocabulary Tokens

Language Modelling

n-gram Language Models

What are n-grams?

2 Definition

An n-gram is a sequence of n consecutive tokens.

« We commonly use these terms for n € (1, 2, 3):

n=1 Unigram ["this"]
n=2 Bigram ["this", "sounds"]
n=3 Trigram ["this", "sounds", "great"]

- For n > 3, we would usually speak of 4-grams, 5-grams, etc.

Language Modelling » n-gram Models > n-grams

Language modelling with n-grams

- An n-gram language model defines a probability distribution over
sequences of n tokens.

P(wy - w,)

« We often look at the conditional probability of seeing the last word

in an n-gram given the previous words.

[

P(w, | wywy,_;)

- n is also called the order of the language model.

Language Modelling » n-gram Models > n-grams

Unigram models

A unigram language model is just a bag-of-words model.

— bag-of-words: the order of words doesn’t matter
m
P(wy - wy) = [P(w;)
=1

- Here, the probabilities of each word are mutually independent.

Language Modelling » n-gram Models > n-grams

Markov Assumption

The probability of word w, only depends on the n — 1 previous words.

— For n = 2, the probability of “great” only depends on “sounds”:

I think this sounds great

- To compute the probability of a longer sequence, we multiply the conditional
probabilities of subsequent n-grams:

P(‘think’ | ‘T") x P(‘this’ | ‘think’) x P(‘sounds’ | ‘this’) x P(‘great’ | ‘sounds’)

Language Modelling » n-gram Models » Markov Models

Marking sentence boundaries

BOS I think this sounds great EOS

« For a well-defined model, we also need to mark the sentence boundaries.

— e.g. we can’t define a probability for the first word otherwise

P('T" | BOS) x P(‘think’ | 'T’) x ... x P(‘great’ | ‘'sounds’) x P(EOS | ‘great’)

beginning-of-sequence end-of-sequence

Language Modelling » n-gram Models » Markov Models

Bigram models

A bigram language model is a Markov model on word sequences.

P(w,---w,,) = P(w, | BOS) x (ﬁ P(w; | w,-_l)) x P(EOS | w,,)
i=2

k
P(sp-sp) = HP(wi | w;_y)
=2

sequence including Bos and EOS

« The probability of each word depends only on the word before it.
— That’s the Markov property.

Language Modelling » n-gram Models » Markov Models

12

n-gram models

BOS BOS BOS I think this sounds great EOS

 In general, the input sequence must be padded with n — 1 BOS tokens.

— Note that it’s always enough to have one EOS token!

« We can then define an n-gram language model for arbitrary n:

k
P(sy-si) = [T P(si | Sicgneny*~Sic1)

i=n

sequence including Bos and EOS n — 1 preceding words

Language Modelling » n-gram Models » Markov Models

Predictive typing with n-gram models

» To predict the next word, we can choose
the word with the highest probability
from our vocabulary:

arg max P(w | ‘That sounds’)
weV

vocabulary =
set of all possible words

Language Modelling » n-gram Models > Applications

@F) That sounds|

Via Microsoft SwiftKey
14

Generating text from n-gram models

« We can generate new text by sampling from the vocabulary.
— “sampling”: picking words based on their probability in the language model

— Without further conditioning, this does not produce meaningful text...

to him at the chamber at his best, and my words brought a
newspaper i expect, will reallocate resources, and which analysis
alone can bring one of those categories.

Text sampled from a small English trigram model

Language Modelling » n-gram Models > Applications

Limitations of n-gram models

« n-gram models are easy to understand and train, and can be useful tools!

 They are also very limited when it comes to long-range dependencies.

P(‘Sweden is a country in Europe’)

P(‘Sweden has a population of 10.6 million and its capital is Stockholm’)

Language Modelling » n-gram Models > Applications

16

8 Important Concepts

language modelling

n-grams, unigrams, bigrams, trigrams

Markov assumption

sentence boundary markers (BOS, EOS)

Language Modelling » n-gram Models > Important Concepts

17

Training n-gram Language Models

Reminder: General machine learning methodology

Training data

Predicted

Outputs

Learning algorithm g

True
j Outputs E

lllllllllllllllllllll

Language Modelling » Training

19

Maximum likelihood estimation

« We can use maximum likelihood estimation (MLE)
to obtain probabilities for n-gram language models.

« For unigram models, this simply means counting

the tokens.
#(¢ ds’
P(‘sounds’) = (sounds’)
N
N =Y #w)
wevV

total number of tokens

Language Modelling > Training » Maximum Likelihood Estimation

sound
soundcard
sounding

sounds

source

MLE for bigram models

« For bigram models, we need conditional probabilities.

#(‘sounds good’)
Y wey #(sounds’ + w)

P(‘good’ | ‘'sounds’) =

total number of bigrams starting with “sounds”

Language Modelling > Training > Maximum Likelihood Estimation

sounds familiar
sounds good
sounds like
sounds off
sounds on

sounds so

21

MLE for n-gram models

« We can simplify the equation a bit:

#('sounds good’) #('sounds good’)

P(‘good’ | ds’) = 7

do you see why?

« We can perform MLE for any value of n:

#(wl'”wn)

Plw, | wy,---w,_,) =
(nl 1 n]_) #(wl.”wn_l)

Language Modelling > Training » Maximum Likelihood Estimation

22

A problem with maximum likelihood estimation

- If an n-gram never occurred in the training data, we get a probability of zero.

#('sounds amazing’) 0

=0
#(‘'sounds’) 22

P(‘amazing’ | ‘sounds’) =

- Under a Markov model, each sentence containing this n-gram will receive

a total probability of zero, regardless of the rest of the sentence!

P(‘T would love to see this happen because it sounds amazing’) = 0

Language Modelling » Training » Smoothing 23

Unseen n-grams in practice

« Shakespeare’s collected works contain « Shakespeare’s collected works contain

ca. 31,000 unique words (= types). ca. 300,000 unique bigrams.
e There are 961 million possible » This means that 99.97% of all
bigrams with these words. possible bigrams occur zero times.
2 — 300000
31000 961000000 1 - ~ 0.99968
961000000

Language Modelling » Training » Smoothing

Additive (add- k) smoothing

« We can use add-k smoothing to ensure the probability is never zero.

the size of the vocabulary

— For arbitrary n:

#wyw,) + k
#wy-w,_,) + k- |V

P(wy, | wy-w,_y) =

— k can be any positive number, i.e. k € R,
— If k = 1, this is also called Laplace smoothing.

Language Modelling > Training > Smoothing

25

Additive smoothing and the probability mass

« We only have a constant amount of probability mass to distribute.

— Probabilities must always sum up to 1.

- Additive smoothing...
— subtracts probability from actually observed n-grams, then

— redistributes it equally among all possible n-grams.

- There are more sophisticated smoothing techniques for language modelling

(but we won't look at them).
— Witten—Bell smoothing, Kneser—Ney smoothing

Language Modelling > Training > Smoothing

26

Redistributing the probability mass

, .
+ Let’s consider a toy example. awesome | great | sounds | _that _

— vocabulary:] - .
{awesome, great, sounds, that} 5 3 5 3
— training data: [that sounds great] 0.00 0.33 0.33 0.33

 Ater smoothing (with £ = 1), cach - | Ml I ol I

observation loses ca. 14 % of its

2
original probability. ; =
2

0.14 0.29 0.

Language Modelling > Training > Smoothing

A problem that smoothing cannot solve...

« Smoothing helps with unseen n-grams.

— combinations of tokens that didn’t occur in the training data

« Smoothing does not help with out-of-vocabulary tokens!

One ecological change dams bring to rivers is caused by something

called hydropeaking.

Source: New York Times, 02.08.2022

- Remember: We always need a fixed (and finite) vocabulary.

Language Modelling > Training » Out-of-Vocabulary Tokens

28

https://www.nytimes.com/2022/08/02/science/yellowstone-flooding.html

Out-of-vocabulary tokens

« One solution is to introduce an UNK symbol for “unknown” words.

One ecological change dams bring to rivers is caused by something
called UNK.

 During training, we replace very rare tokens with UNK.

— e.g. all tokens occuring only a single time
— This makes the model learn probabilities for UNK.

- During testing, we replace all out-of-vocabulary tokens with UNK.

Language Modelling » Training » Out-of-Vocabulary Tokens

29

8 Important Concepts

« maxixum likelihood estimation

- additive (add-k) smoothing

- out-of-vocabulary words, UNK token

Language Modelling » Training > Important Concepts

30

Evaluation of Language Models

Intrinsic and extrinsic evaluation

@ Intrinsic evaluation: How does the model score on evaluation metrics?

— In classification, we used accuracy, precision, recall, F1-score.

— In language modelling, these are not very meaningful.

© Extrinsic evaluation: How much does it help on a downstream task?

— “downstream” ~ anything we want to use the model for
— e.g. How good is a grammatical error detector when using this language model?

— We use the evaluation metric of the downstream task.

Language Modelling » Evaluation > Intrinsic vs. Extrinsic

32

From probabilities to surprisal
- Instead of (raw) probabilities, we often work with negative log-probabilities.
—log P(wy--wy)

- Intuitively, this measures the surprisal of observing the sentence.
— high probability = low negative log-probability = low surprisal

2 Definition

The entropy of a language model is its average surprisal per token.

1
H(w,---wy) = _Nlogp(wl'"wN)

Language Modelling > Evaluation » Entropy

33

Negative log-probabilities

—log P

Language Modelling > Evaluation » Entropy

5.0
4.5
4.0
3.5
3.0

2.5 |
2.0 |
1.5 |
1.0 |
0.5 }
0.0 !

—

0.0

0.2

0.4

P

0.6

0.8

1.0

34

Perplexity

2 Definition

The perplexity of a language model is its exponentiated entropy.

PPL(x) = 2H® = p~wlog P)

- Perplexity is one of the standard metrics for evaluating language models.

- Intuitively, if the perplexity on a sentence is y, the model is “as surprised” as if it

had to, on average, pick between y tokens with equal probability.

Language Modelling » Evaluation > Perplexity 35

Entropy vs. perplexity

Language Modelling » Evaluation > Perplexity

------- Entropy
— Perplexity

36

Interpreting perplexity values

 Typically, perplexity is a value between 1 and |V|.
— PPL(x) = 1 — text can be predicted perfectly

— PPL(x) = |V| — like randomly guessing from the entire vocabulary

- In practice, the absolute perplexity value depends on the vocabulary.

— larger vocabulary = higher uncertainty for each token = higher perplexity

Comparing two language models with perplexity only makes sense

if both models use the same vocabulary!

Language Modelling » Evaluation > Perplexity

37

8 Important Concepts

« intrinsic vs. extrinsic evaluation

- negative log probabilities

- entropy, perplexity, and how to interpret them

Language Modelling » Evaluation » Important Concepts

38

	Language modelling in a nutshell
	Example: Predictive typing
	Example: Grammar correction
	Language modelling is behind all AI assistants
	
	n-grams
	What are n-grams?
	Language modelling with n-grams
	Unigram models

	Markov Models
	
	Marking sentence boundaries
	Bigram models
	n-gram models

	Applications
	Predictive typing with n-gram models
	Generating text from n-gram models
	Limitations of n-gram models

	
	Reminder: General machine learning methodology
	Maximum Likelihood Estimation
	Maximum likelihood estimation
	MLE for bigram models
	MLE for n-gram models

	Smoothing
	A problem with maximum likelihood estimation
	Unseen n-grams in practice
	Additive (add-k) smoothing
	Additive smoothing and the probability mass
	Redistributing the probability mass

	Out-of-Vocabulary Tokens
	A problem that smoothing cannot solve…
	Out-of-vocabulary tokens

	
	Intrinsic vs. Extrinsic
	Intrinsic and extrinsic evaluation

	Entropy
	From probabilities to surprisal
	Negative log-probabilities

	Perplexity
	Perplexity
	Entropy vs. perplexity
	Interpreting perplexity values

