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Semantics
or: The Meaning of Words
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Lemmas and lexemes

• Different word forms can have the same fundamentalmeaning.

RUN : run , runs, ran, running

• A lexeme is the abstract meaning

represented by a set of word forms.

– “word sense”

• A lemma is the word form chosen to

represent a given lexeme.

– “dictionary form”
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What is the meaning of “life”?

• Word sense ambiguity:

One lemma can represent

multiple lexemes.

• The lemma life in

Merriam-Webster has:

– 20 different meanings

as a noun

– 4 different meanings

as an adjective

Source: Merriam-Webster
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Polysemy and homonymy

• Polysemy: a word has multiple, semantically relatedmeanings.

– LIFE
1: “the quality that distinguishes a vital and functional being from a dead body”

– LIFE
5: “the period from birth to death”

– LIFE
8: “a vital or living being”

• Homonymy: a word has multiple, semantically unrelatedmeanings.

– BASS
1: a type of fish

– BASS
2: “the lowest adult male singing voice”
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Semantic relations between word senses

• Synonymy

two senses are (nearly) identical

COUCH SOFA
is synonym of

• Hyponymy

a sense ismore specific than the other

• Antonymy

two senses are opposites of each other

HOT COLD
is antonym of

• Hypernymy

a sense is less specific than the other

COFFEE BEVERAGE

is hyponym of

is hypernym of
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A hierarchy of hypernyms

Source: WordNet

liquid

beverage, drink

coffee

cappuccino espresso

caffe latte

mocha

tea fruit juice

nectar apple juice
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Semantic networks

• A semantic network – also called knowledge graph – is a collection of

words and semantic relations between them.

• An example of a multilingual knowledge graph is External-Link-Alt ConceptNet.

– Covers ten “core” languages with a combined vocabulary of 9.5 million entries.

– Contains “words and phrases and common-sense relationships between them.”

• The basic unit of ConceptNet is a string, i.e. a word or phrase.

– Doesn’t distinguish between different word senses.
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Example relations for the word coffee in ConceptNet

Source: ConceptNet 5.8

Synonyms

en coffee bean

es café

sv kaffe

zh 咖啡

Hyponyms

en cappuccino

en espresso

en instant coffe

en mocha

Hypernyms

en beverage

en drink

en stimulant

en tree

Antonyms

en tea
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BOOK Important concepts

• lemma, lexeme

• polysemy, homonymy

• semantic relations

– synonymy, antonymy, hypernymy, hyponymy
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Distributional Semantics
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Reminder: Bag of words

• For most machine learning algorithms, we first need to

convert text into numerical vectors.

It is a truth universally acknowledged,

that a single man in possession of a

good fortune must be in want of a wife.

CLOCK Earlier, we learned about the bag-of-words representation.
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Bag-of-words as a numerical vector
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COGS model
It is a truth universally acknowledged, that

a single man in possession of a good for-

tune must be in want of a wife.
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Sequence representation with one-hot vectors

a

⋯

good

⋯

of

⋯

truth

⋯

wife

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

… COGS model… of a good …

Each vector indicates which word
it represents; also called
one-hot representation
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Reminder: How do we represent text?

• So far, we used either bag-of-words or simply individual words.

– each vector dimension corresponds to a word in the vocabulary

• We also learned about feature vectors.

– each vector dimension corresponds to a feature that we define by hand

BOLT Problem

None of these encode anything about themeaning of words.
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Dense vector representations

Idea #1

Vectors should encode themeaning of words, so that words with similar

meanings are closer to each other in the vector space.

• This type of vector is called aword embedding.

– “embedded” into a vector space

– dense vectors: all values are typically non-zero!

• Dimensions (axes) of the vector now have no clearly defined interpretation.
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Sequence representation with word embeddings
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of a good
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Distributional semantics

Idea #2

We can look at the context of words to learn something about their meaning.

• Popularized by English linguist John R. Firth in the 1950s.

– “You shall know a word by the company it keeps.”

• Two words that frequently occur together are called collocations.

…trying to rebuild his life after the tragic death of his wife …
…sometimes dark and all about life, love and death, the stories are …

…to understand the life, work and death of Jesus of Nazareth …
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Collocations

ARROW-LEFT

Source: COCA (requires registration)
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What can we learn from collocations?

Paraphrased from Wikipedia

• What can we learn about Garrotxa from the following sentences?

– Garrotxa is made from milk.

– Garrotxa pairs well with crusty country bread.

– Garrotxa is aged in caves to enhance mold development.

• The distributional hypothesis states that words with

similar distributions have similar meanings.

– “distributions” ≈ what contexts a word appears in
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https://en.wikipedia.org/wiki/Garrotxa_cheese


BOOK Important concepts

• word embeddings

• collocations

• distributional semantics

• distributional hypothesis
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Vector Semantics
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Vector semantics

• Pre-trained word embeddings can be downloaded for many languages.

– External-Link-Alt NLPL word embeddings repository

– External-Link-Alt ConceptNet Numberbatch

• How can we analyze the information encoded in these vectors?

– Idea: “words with similar meanings should be closer to each other in the vector space”

• What else can we do with these vectors?
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Word embeddings, intuition

cheese

milk

metal

steel
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The dot product

𝒗 = (+2, +2)
𝒘 = (+2, +1)

𝒗

𝒘

𝒗 ⋅ 𝒘 = +6

𝒗 = (+2, +2)
𝒘 = (−2, −1)

𝒗

𝒘

𝒗 ⋅ 𝒘 = −6

𝒗 = (+2, +2)
𝒘 = (−2, +2)

𝒗𝒘

𝒗 ⋅ 𝒘 = ±0
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Cosine similarity

• The dot product is sensitive to the length of the vectors.

• The cosine similarity of two vectors is the length-normalized dot product:

cos(𝒗, 𝒘) = 𝒗
|𝒗|

⋅ 𝒘
|𝒘|

= 𝒗 ⋅ 𝒘
|𝒗| ⋅ |𝒘|

=
∑𝑑

𝑖=1 𝒗𝒊𝒘𝒊

√∑
𝑑
𝑖=1 𝒗

2
𝒊 ⋅ √∑

𝑑
𝑖=1 𝒘

2
𝒊

• Cosine similarity ranges from –1 (opposite) to +1 (identical).
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Cosine similarity

𝒗 = (+2, +2)
𝒘 = (+2, +1)

𝒗

𝒘

𝒗 ⋅ 𝒘 = +6

cos(𝒗, 𝒘) = 𝒗 ⋅ 𝒘
|𝒗||𝒘|

= 6

√22 + 22 ⋅ √22 + 12

= 6
√8 ⋅ √5

≈ 6
6.3246

≈ 0.9487
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Cosine similarity on word embeddings

cheese

milk

metal

steel

–0.57
0.97
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Word analogies

• Word analogies are one way to “probe” the information encoded in word vectors.

This was originally proposed by Mikolov et al. (2013)

man : woman :: king : queen

man is to woman as king is to queen

• Idea: Use vector semantics to find the last word of the analogy.

𝒗king − 𝒗man + 𝒗woman ≈ 𝒗queen
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Word analogies, intuitively

king

man

woman

queen

king – man

+ woman
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BOOK Important concepts

• cosine similarity

• word analogies (with embedding vectors)
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Learning Word Embeddings
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Intuition: Learning word embeddings

• Word embeddings are typically produced by training neural networks.

• Similar to the perceptron, neural networks haveweight matrices that they “learn.”

̂𝒚 = 𝑓 ( 𝒙 𝑾 )

input vector ∈ ℝ𝑛 weight matrix ∈ ℝ𝑛×𝑘

• If 𝒙 is an indicator vector for a word 𝑤, then 𝒙 ⋅ 𝑾 is theword embedding for 𝑤.
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Continuous bag-of-words model

• Train a classifier to predict a word from its context:

cheeseaisGarrotxa from goat milk
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Continuous skip-gram model

• Train a classifier to predict context from a given word:

cheeseaisGarrotxa from goat milk

• Both methods were originally implemented as Google’sword2vec.
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Skip-gram model as binary classification

▶ What’s the probability thatmilk is a real context word of cheese?

𝑃(+ |milk, cheese)

• Ifmilk and cheese are semantically similar, we want this probability to be high.

▶ What’s the probability that robot is not a real context word of cheese?

𝑃(− | robot, cheese) = 1 − 𝑃(+ | robot, cheese)

• If robot and cheese are semantically different, we want this probability to be low.
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From dot product to probability

• The dot product takes values in the range [−∞, +∞].

• We can use the logistic function to map this to the range [0, 1].

𝜎(𝑥) = 1
1 + exp(−𝑥)

−4 −2 2 4

0.2

0.4

0.6

0.8

1
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Negative sampling

• We can get positive examples from training data.

• We can get negative examples using negative sampling.

– randomly sample words from the entire vocabulary

𝑃(+ | is, cheese)
𝑃(+ | from, cheese)
𝑃(+ | goat, cheese)
𝑃(+ |milk, cheese)

𝑃(− | wicked, cheese)
𝑃(− | doubts, cheese)

𝑃(− | hell, cheese)
𝑃(− |metal, cheese)

𝑃(− |mattress, cheese)
𝑃(− | headers, cheese)
𝑃(− | therapy, cheese)

𝑃(− | packages, cheese)
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Learning embeddings with the skip-gram model

1 Initialize all word vectors with random values.

2 Compute probabilities for both positive and negative examples.

3 Apply a learning algorithm to update the word vectors.

– probability should be high for positive examples, low for negative examples

– common algorithm: stochastic gradient descent (SGD)→ advanced material!

4 Repeat steps 2 & 3 several times.
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Example: Learning embeddings with the skip-gram model

-1.71
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milk cheese

𝑃(+ |milk, cheese) = 𝜎( ) ≈ 𝜎(−0.73) ≈ 0.33

Step 1: Initialize vectors
with random values.

Step 2: Compute probability
of a positive example.

Step 3: Update the vectors
so that their dot product

increases.
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Example: Learning embeddings with the skip-gram model
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≈ 𝜎(−0.73) ≈ 0.33Step 1: Initialize vectors
with random values.

Step 2: Compute probability
of a positive example.

Step 3: Update the vectors
so that their dot product

increases.
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Example: Learning embeddings with the skip-gram model
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BOOK Important concepts

• skip-gram model

• logistic function

• negative sampling
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Outlook
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Using word embeddings for classifiers

• In sequence labelling, word embeddings can replace feature vectors.

– simply represent each word by its embedding

• Word embeddings can also replace bag-of-words in classification.

– e.g. average the embeddings of all words in a sentence

• Mapping words to embeddings is the first step in any neural networkmodel.

– includes all state-of-the-art NLP models, like ChatGPT
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Static vs. dynamic embeddings

• Static embeddings: a word will always get the same vector regardless of context.

– e.g. “bass” the instrument vs. “bass” the fish

• Dynamic (also: contextualized) embeddings solve this problem.

– require more advanced neural networks
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