729G86/TDP030 Language Technology (VT2025)

Word Embeddings

Marcel Bollmann

Department of Computer and Information Science (IDA)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Today's lecture

1. Semantics

- Lemmas and Lexemes
- Semantic Relations
- 2. Distributional Semantics
 - Vector Representations
 - Collocations

3. Vector Semantics

- Cosine Similarity
- Analogies

4. Learning Word Embeddings

- Skip-gram
- Example
- 5. Outlook

Semantics or: The Meaning of Words

Word Embeddings > Semantics

Lemmas and lexemes

• Different word forms can have the same fundamental meaning.

RUN : run, runs, ran, running

• A lexeme is the abstract meaning represented by a set of word forms.

"word sense"

• A lemma is the word form chosen to represent a given lexeme.

- "dictionary form"

What is the meaning of "life"?

Merriam Webster	Thesaurus life X Q Games & Quizzes Word of the Day							
Dictionary	life 1 of 2 noun							
Definition	('IIf 49)							
noun	plural lives ('IVZ #8)							
	Synonyms of life >							
	1 a : the quality that distinguishes a vital and functional being from a dead body							
	 b : a principle or force that is considered to underlie the distinctive quality of animate beings c : an organismic state characterized by capacity for metabolism (see METABOLISM sense 1), growth, reaction to stimuli, and reproduction 2 a: the sequence of physical and mental experiences that make up the existence of an individual 							
Phrases Containing								
Save Word 💕	children are the joy of our <i>lives</i> – Agnes S. Turnbull							
	b : one or more aspects of the process of living							
	sex <i>life</i> of the frog							
	3 : BIOGRAPHY sense 1							
	the <i>life</i> of George Washington							
	4 : spiritual existence transcending (see TRANSCEND sense 1c) physical death							
	his craving for the release into the <i>ll/e</i> to come – Rodney Gilbert							
	5 a : the period from birth to death							
	b : a specific phase of earthly existence							
	adult life							

- Word sense ambiguity: One lemma can represent multiple lexemes.
- The lemma *life* in Merriam-Webster has:
 - **20 different meanings** as a noun
 - 4 different meanings as an adjective

Source: Merriam-Webster

Polysemy and homonymy

- **Polysemy**: a word has multiple, semantically **related** meanings.
 - LIFE¹: "the quality that distinguishes a vital and functional being from a dead body"
 - $-\,$ $_{\rm LIFE^5}:$ "the period from birth to death"
 - LIFE⁸: "a vital or living being"
- Homonymy: a word has multiple, semantically unrelated meanings.
 - BASS¹: a type of fish
 - BASS²: "the lowest adult male singing voice"

Semantic relations between word senses

• Synonymy two senses are (nearly) identical

 $\begin{array}{c} \text{is synonym of} \\ \text{COUCH} \longleftarrow \text{SOFA} \end{array}$

• Antonymy

two senses are opposites of each other

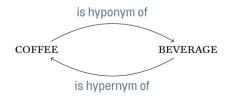
 $\begin{array}{c} \text{is antonym of} \\ \text{HOT} \longleftarrow \text{COLD} \end{array}$

• Hyponymy

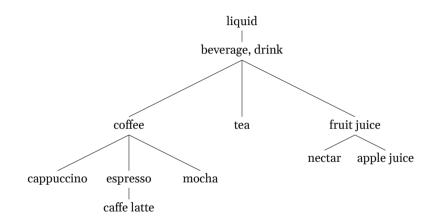
a sense is *more* specific than the other

• Hypernymy

a sense is *less* specific than the other



A hierarchy of hypernyms



Source: WordNet

Semantic networks

- A semantic network also called knowledge graph is a collection of words and semantic relations between them.
- An example of a multilingual knowledge graph is 🗹 ConceptNet.
 - Covers ten "core" languages with a combined vocabulary of 9.5 million entries.
 - Contains "words and phrases and common-sense relationships between them."
- The basic unit of ConceptNet is a string, i.e. a word or phrase.
 - Doesn't distinguish between different word senses.

Example relations for the word *coffee* in ConceptNet

Source: ConceptNet 5.8

Important concepts

- lemma, lexeme
- polysemy, homonymy
- semantic relations
 - synonymy, antonymy, hypernymy, hyponymy

Distributional Semantics

Word Embeddings > Distributional Semantics

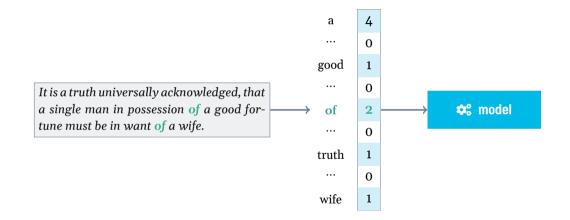
Reminder: Bag of words

• For most machine learning algorithms, we first need to **convert text into numerical vectors**.

It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife.

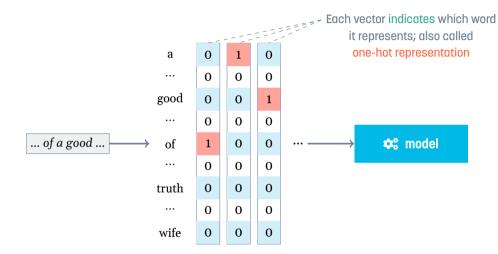
S Earlier, we learned about the **bag-of-words** representation.

Bag-of-words as a numerical vector



Word Embeddings > Distributional Semantics > Vector Representations

Sequence representation with one-hot vectors



Word Embeddings > Distributional Semantics > Vector Representations

Reminder: How do we represent text?

- So far, we used either **bag-of-words** or simply **individual words**.
 - each vector dimension corresponds to a word in the vocabulary
- We also learned about **feature vectors**.
 - each vector dimension corresponds to a feature that we define by hand

Problem

None of these encode anything about the meaning of words.

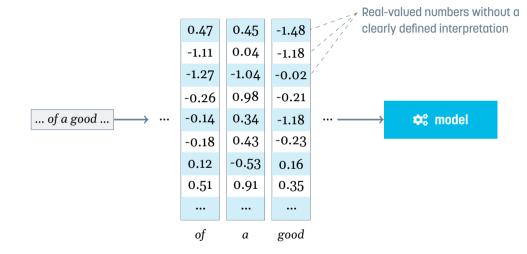
Dense vector representations

💡 Idea #1

Vectors should encode the **meaning** of words, so that words with similar meanings are **closer to each other** in the vector space.

- This type of vector is called a word embedding.
 - "embedded" into a vector space
 - dense vectors: all values are typically non-zero!
- Dimensions (axes) of the vector now have no clearly defined interpretation.

Sequence representation with word embeddings



Word Embeddings > Distributional Semantics > Vector Representations

Distributional semantics

💡 Idea #2

We can look at the **context** of words to learn something about their meaning.

- Popularized by English linguist John R. Firth in the 1950s.
 - "You shall know a word by the company it keeps."
- Two words that frequently occur together are called collocations.

...trying to rebuild his **life** after the tragic **death** of his wifesometimes dark and all about **life**, love and **death**, the stories areto understand the **life**, work and **death** of Jesus of Nazareth ...

Collocations

🚱 Corpus of Contemporary American English (📄 💽 🧾 🚳													
SEARCH				WORD			CONTEXT						
COLLOCATES BOOK NOUN See also as: VERB Advanced options (R) Col													
+ NOUN		NEW WORD	?	+ ADJ		NEW WORD	?	+ VERB		NEW WORD	?		
7596	3.86	author		5289	6.77	comic		29765	4.32	read			
				1804	2.84	favorite		23719	3.81	write			
2868	3.41	library		1382	6.06	best-selling		6349	4.23	publish			
2385	2.58	club		618	4.74	forthcoming		1660	2.95	recommend			
2136	2.80	title		587	6.25	self-help		1306	2.86	review			
2040	3.45	сору	E	502	3.58	audio	E	875	4.39	title	E		
2008	3.54	chapter	E	429	4.25	printed	E	559	2.80	entitle	E		
1949	3.62	description	E	351	2.62	upcoming	E	467	2.55	research	E		
1836	2.51	reader		259	3.36	published		442	4.13	kindle	E		
1757	3.09	cover		255	6.60	self-published		355	5.09	author			
1592	2.70	reading		205	3.51	award-winning		301	5.63	co-author			

Source: COCA (requires registration)

What can we learn from collocations?

- What can we learn about Garrotxa from the following sentences?
 - Garrotxa is made from milk.
 - Garrotxa pairs well with crusty country bread.
 - Garrotxa is aged in caves to enhance mold development.
- The distributional hypothesis states that words with similar distributions have similar meanings.
 - "distributions" \approx what contexts a word appears in

- word embeddings
- collocations
- distributional semantics
- distributional hypothesis

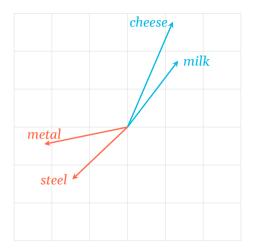
Vector Semantics

Word Embeddings > Vector Semantics

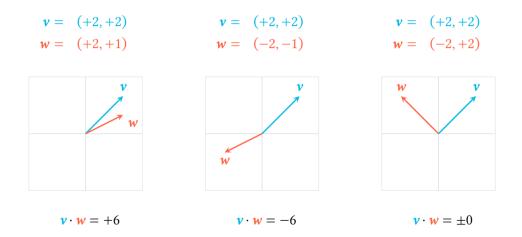
Vector semantics

- Pre-trained word embeddings can be downloaded for many languages.
 - Image: NLPL word embeddings repository
 - ConceptNet Numberbatch
- How can we analyze the information encoded in these vectors?
 - Idea: "words with similar meanings should be closer to each other in the vector space"
- What else can we do with these vectors?

Word embeddings, intuition



The dot product



Word Embeddings > Vector Semantics > Cosine Similarity

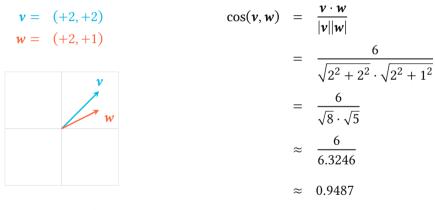
Cosine similarity

- The dot product is sensitive to the **length** of the vectors.
- The cosine similarity of two vectors is the length-normalized dot product:

$$\cos(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v}}{|\mathbf{v}|} \cdot \frac{\mathbf{w}}{|\mathbf{w}|} = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| \cdot |\mathbf{w}|}$$
$$= \frac{\sum_{i=1}^{d} \mathbf{v}_{i} \mathbf{w}_{i}}{\sqrt{\sum_{i=1}^{d} \mathbf{v}_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{d} \mathbf{w}_{i}^{2}}}$$

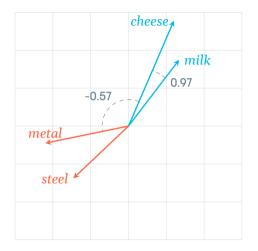
• Cosine similarity ranges from -1 (opposite) to +1 (identical).

Cosine similarity



 $\mathbf{v} \cdot \mathbf{w} = +6$

Cosine similarity on word embeddings



Word analogies

• Word analogies are one way to "probe" the information encoded in word vectors.

man : woman :: king : queen

man is to woman as king is to queen

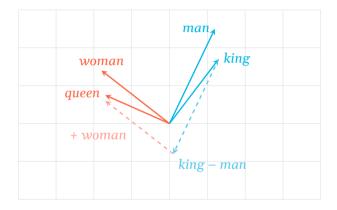
• Idea: Use vector semantics to find the last word of the analogy.

 $v_{king} - v_{man} + v_{woman} \approx v_{queen}$

This was originally proposed by Mikolov et al. (2013)

Word Embeddings > Vector Semantics > Analogies

Word analogies, intuitively



Important concepts

- cosine similarity
- word analogies (with embedding vectors)

Learning Word Embeddings

Word Embeddings > Learning Word Embeddings

Intuition: Learning word embeddings

- Word embeddings are typically produced by training neural networks.
- Similar to the perceptron, neural networks have weight matrices that they "learn."

$$\hat{\boldsymbol{y}} = f\left(\boldsymbol{x} \; \boldsymbol{W}\right)$$
input vector $\in \mathbb{R}^n$ weight matrix $\in \mathbb{R}^{n \times k}$

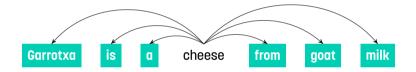
• If x is an indicator vector for a word w, then $x \cdot W$ is the word embedding for w.

Continuous bag-of-words model

• Train a classifier to predict a word from its context:

Continuous skip-gram model

• Train a classifier to predict context from a given word:



• Both methods were originally implemented as Google's word2vec.

Skip-gram model as binary classification

▶ What's the probability that *milk* is a **real context word** of *cheese*?

P(+ | milk, cheese)

• If milk and cheese are semantically similar, we want this probability to be high.

▶ What's the probability that *robot* is **not** a **real context word** of *cheese*?

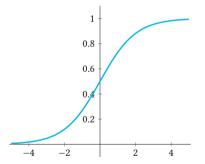
P(- | robot, cheese) = 1 - P(+ | robot, cheese)

• If robot and cheese are semantically different, we want this probability to be low.

From dot product to probability

- The dot product takes values in the range $[-\infty, +\infty]$.
- We can use the **logistic function** to map this to the range [0, 1].

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$



Word Embeddings > Learning Word Embeddings > Skip-gram

Negative sampling

- We can get **positive examples** from training data.
- We can get negative examples using negative sampling.
 - randomly sample words from the entire vocabulary

- P(+ | is, cheese)P(+ | from, cheese)P(+ | goat, cheese)P(+ | milk, cheese)
- P(- | wicked, cheese) $P(- \mid doubts, cheese)$
 - $P(- \mid mattress, cheese)$ P(- | headers, cheese)P(- | hell, cheese) P(- | therapy, cheese)P(- | metal, cheese) P(- | packages, cheese)

Learning embeddings with the skip-gram model

- 1 Initialize all word vectors with random values.
- 2 Compute probabilities for both positive and negative examples.
- 3 Apply a learning algorithm to update the word vectors.
 - probability should be high for positive examples, low for negative examples
 - common algorithm: stochastic gradient descent (SGD) \rightarrow advanced material!
- 4) Repeat steps 2 & 3 several times.

Example: Learning embeddings with the skip-gram model

	-1.71	0.36
	-0.50	-0.04
	-0.80	1.59
	0.68	0.12
Step 1: Initialize vectors with random values.	-1.31	-0.63
with fundom values.	-0.17	-0.26
	0.99	0.03
	-0.37	-0.40

cheese

milk

Example: Learning embeddings with the skip-gram model

	-1.71		0.36	
	-0.50		-0.04	
	-0.80		1.59	
	0.68		0.12	
$P(+ milk, cheese) = \sigma($	-1.31	•	-0.63)
	-0.17		-0.26	
	0.99		0.03	
	-0.37		-0.40	
	milk	,	cheese	

Step 2: Compute probability of a positive example.

Example: Learning embeddings with the skip-gram model

	-1.71		0.36				
$P(+ \mid milk, cheese) = \sigma($	-0.50		-0.04				
	-0.80		1.59				
	0.68		0.12				
	-1.31	·	-0.63)	$) \approx \sigma(-0.73)$	≈ 0.33	
	-0.17		-0.26				
	0.99		0.03				
	-0.37		-0.40		Step 3: Up	3: Update the vectors that their dot product	
	0.37		0.40		so that th		
	•••				inc	reases.	
	milk		cheese				

Important concepts

- skip-gram model
- logistic function
- negative sampling

Word Embeddings > Learning Word Embeddings > Important concepts

Outlook

Word Embeddings 🕨 <u>Outlook</u>

Using word embeddings for classifiers

- In sequence labelling, word embeddings can replace feature vectors.
 - simply represent each word by its embedding
- Word embeddings can also **replace bag-of-words** in classification.
 - *e.g.* average the embeddings of all words in a sentence
- Mapping words to embeddings is the first step in any neural network model.
 - includes all state-of-the-art NLP models, like ChatGPT

Static vs. dynamic embeddings

- Static embeddings: a word will always get the same vector regardless of context.
 - *e.g.* "bass" the instrument vs. "bass" the fish
- Dynamic (also: contextualized) embeddings solve this problem.
 - require more advanced neural networks

