
729G86/TDP030 Language Technology

Word Embeddings
Dense Vector Representations of Text

Marcel Bollmann

Department of Computer Science (IDA)

With inspiration from Jurafsky & Martin (2026)

https://liu-nlp.ai/lang-tech/
https://web.stanford.edu/~jurafsky/slp3/

Reminder: From text to vectors



Preprocessing

Tokenization

Vectorization

Model

e.g. lowercasing, stop-word removal

e.g. with regular expressions

e.g. bag-of-words representation

Previously, we used

the bag-of-words

method to turn text

into vectors.

Word Embeddings 1

Limitations of count-based vectors

 No notion of lexical similarity.

– ‘work’, ‘worked’, ‘works’, ‘working’

are all independent features

 No notion of semantic similarity.

– ‘amazing’, ‘fantastic’, ‘great’, ‘terrific’

are all independent features

 Huge vectors lead to the curse of dimensionality.

– More features ⇝ harder to learn meaningful

patterns, more training data required

– Most elements are zero!

a 1
adjuster 0
amazing 1

⋮ ⋮

it 3
item 0
just 1

⋮ ⋮

will 0
wish 1

works 3

Word Embeddings 2

Alternative: Dense vectors

• Count vectors (like bag-of-words) are

– long (length of 20k, 50k, 100k or more)

– sparse (most elements are zero)

• Alternative: learn vectors that are

– short (length of 50–1000)

– dense (most elements are non-zero)

Why is this better?

1 Shorter vectors lead to smaller models and faster training.
– Need to store & learn fewer weights

2 Dense vectors models can generalize better to new data.

3 Dense vectors can capture similarity between words.

Word Embeddings 3

Intuition: Similar words should be closer together in the vector space

0

awesome

great

fantastic

bad

terrible

awful

• This type of vector is called a word embedding.

Word Embeddings 4

In order to talk about embeddings,

we need to talk about neural networks.

Outline

 Neural Networks

• Artificial Neurons

• From Neurons to Networks

• Embedding Layers

 Learning Embeddings

• Distributional Hypothesis

• word2vec

• Skip-gram model

 Vector Semantics

• Cosine Similarity

• Analyzing Embeddings

Word Embeddings 5

Neural Networks

This is a neuron in your brain

Word Embeddings  Neural Networks  Artificial Neurons 7

Image: Bruce Blaus via Wikimedia

https://commons.wikimedia.org/w/index.php?curid=28761830

This is a neuron in an artificial neural network

ᵠΣ

𝑤
1𝑗

𝑤2𝑗

𝑤3𝑗

𝑤𝑛𝑗

𝑥1

𝑥2

𝑥3

𝑥𝑛

Inputs Weights

Transfer
Function

Activation
Function

𝜃𝑗
Threshold

𝑜𝑗
Activation

Word Embeddings  Neural Networks  Artificial Neurons 8

Image: Wikimedia

https://commons.wikimedia.org/wiki/File:Artificial_neuron_structure.svg

Artificial neuron, mathematically

• A single neuron computes a weighted sum of inputs, plus a bias:

𝑧 = ∑
𝑖
(𝑤𝑖 · 𝑥𝑖) + 𝑏

↑

That is essentially the same as logistic regression!

• Instead of using 𝑧 directly, we apply a non-linear activation function 𝑓:

𝑦 = 𝑓(𝑧)

Word Embeddings  Neural Networks  Artificial Neurons 9

Non-linear activation functions

• The sigmoid function 𝜎 is an

example of a non-linear function.

𝜎(𝑧) =
1

1 + 𝑒−𝑧

−5 0 5
𝑧

0.0

0.2

0.4

0.6

0.8

1.0

𝜎
(𝑧
)

Word Embeddings  Neural Networks  Artificial Neurons 10

An example calculation

• Suppose an artificial neuron has

learned these weights & bias:

𝑤 =
(

0.2
0.3
0.9)

, 𝑏 = 0.5

• Suppose the neuron receives this

input vector 𝑥:

𝑥 =
(

0.5
0.6
0.1)

• With a sigmoid activation, we compute:

𝑦 = 𝜎(𝑤 · 𝑥 + 𝑏) = 𝜎(0.2 · 0.5 + 0.3 · 0.6 + 0.9 · 0.1 + 0.5)
= 𝜎(0.87)

=
1

1 + 𝑒−0.87
= 0.7

Word Embeddings  Neural Networks  Artificial Neurons 11

From neurons to networks

𝑥3

𝑥2

𝑥1
𝑦1

𝑦2

• Neurons can be connected in a lot of ways to form an artificial neural network.

– Each arrow in the diagram represents a single neuron activation 𝑓(𝑥𝑖 · 𝑤 + 𝑏)

Word Embeddings  Neural Networks  From Neurons to Networks 12

Neural networks for text classification

𝑥1 = #(awesome) = 3

𝑥2 = #(bad) = 0

𝑥3 = #(good) = 1

𝑦1 = 𝑃(positive)

𝑦2 = 𝑃(negative)

• Neural networks can be trained like classifiers.

– In principle, they’re suitable for any text classification task!

Word Embeddings  Neural Networks  From Neurons to Networks 13

Let’s simplify a bit and assume

that the input to our neural network

is only a single word.

Embedding layers

• One-hot vectors encode the 𝑖-th word in the vocabulary by setting

𝒗𝑛 = {1 if 𝑛 = 𝑖
0 if 𝑛 ≠ 𝑖

• That means all entries are 0 except for one, which represents the index of the word.

– Like a “bag of words” with just a single word

awesome: 𝑖 = 1 → [1, 0, 0, 0]
bad: 𝑖 = 2 → [0, 1, 0, 0]
good: 𝑖 = 3 → [0, 0, 1, 0]

terrible: 𝑖 = 4 → [0, 0, 0, 1]

Word Embeddings  Neural Networks  Embedding Layers 14

Embedding layers

𝑥1 = 0

𝑥2 = 0

𝑥3 = 1

𝑥4 = 0

𝑦1

𝑦2

𝑦3

𝑦4

• In a neural network that takes one-hot vectors as input, the first layer (= neurons

that are activated) is called an embedding layer.

Word Embeddings  Neural Networks  Embedding Layers 15

Embedding layers

• In a neural network, an embedding layer stores a weight matrix 𝑾 ∈ ℝ𝑘×𝑚.

– 𝑘 = size of the vocabulary, 𝑚 = dimensionality of the embedding space

• Multiplying a one-hot vector 𝒗 ∈ ℕ𝑘 with the weight matrix is like “looking up”

the row that corresponds to that word.

[0 0 1 0] ⋅

[

−7.59

5.56
9.92
8.48

8.32
−4.02
3.82

−1.57

−5.25
−8.63
8.91

−4.08

0.23
−5.72
1.01
3.53

0.68
−4.73
− 2.53
−0.60]

=

[

 9.92

3.82
8.91
1.01

−2.53]

Word Embeddings  Neural Networks  Embedding Layers 16

Embedding layers store word embeddings

[0 0 1 0] ⋅

[

−7.59

5.56
9.92
8.48

8.32
−4.02
3.82

−1.57

−5.25
−8.63
8.91

−4.08

0.23
−5.72
1.01
3.53

0.68
−4.73
−2.53
−0.60]

=

[

 9.92

3.82
8.91
1.01

−2.53]

• We can interpret this as a dense vector representation of the initial word, i.e.,

a word embedding!

Word Embeddings  Neural Networks  Embedding Layers 17

What can we do with word embeddings?

1 We can train statistical classifiers with these embeddings as input.

– Alternative to bag-of-words!

– To represent an entire document, we could average the embeddings of all its words.

2 We can use vector semantics to analyze which vectors are “close together”.

– e.g. run clustering algorithms to find “groups” of similar vectors

But maybe most importantly...

All neural network models use these vector representations internally, so

understanding them helps us understand what neural networks “learn”!

Word Embeddings  Neural Networks  Embedding Layers 18

 Important Concepts

• artificial neural network

• sparse vs. dense vectors

• embedding layers

Word Embeddings  Neural Networks  Important Concepts 19

Learning word embeddings

Distributional semantics

Distributional Hypothesis

Words with similar distributions have similar meanings.

• The “distribution” of a word is the context in which it appears.

“You shall know a word by the company it keeps.”

— John R. Firth

• If the distributional hypothesis is true, we can learn something about the

meaning of a word by studying the surrounding words.

Word Embeddings  Learning Embeddings  Distributional Hypothesis 21

Distributional semantics in practice

• What can we learn about ‘Garrotxa’ from the

following sentences?

– Garrotxa is made from milk.

– Garrotxa pairs well with crusty country bread.

– Garrotxa is aged in caves to enhance mold

development.
Image: Jennifer Woodard Maderazo

Word Embeddings  Learning Embeddings  Distributional Hypothesis 22

https://commons.wikimedia.org/w/index.php?curid=64008735

Example: Collocations

↙︎

Word Embeddings  Learning Embeddings  Distributional Hypothesis 23

Source: COCA (require registration)

https://www.english-corpora.org/coca/

Reminder…

• We want to build a vector space where similar words are closer together!

0

book

review

author

caves

milk

Garrotxa

Word Embeddings  Learning Embeddings  Distributional Hypothesis 24

word2vec

• word2vec is a popular embedding method based on these ideas.

– Proposed in 2013 by researchers from Google

– Very fast to train, code implementations freely available

 Core idea

• Train a neural network on a word prediction task.

• Use the learned weights of that network as embeddings.

Word Embeddings  Learning Embeddings  word2vec 25

Continuous bag-of-words model

• Train a classifier to predict a word from its context:

Garrotxa is a cheese from goat milk

– Input: Bag-of-words of 𝑛 surrounding words (= word order doesn’t actually matter!)

– Output: The target word

Word Embeddings  Learning Embeddings  word2vec 26

Continuous skip-gram model

• Train a classifier to predict context words for a given input word:

Garrotxa is a cheese from goat milk

– Many outputs: We’ll frame this as a binary classification task.

Word Embeddings  Learning Embeddings  Skip-gram model 27

Skip-gram model as binary classification

1 What’s the probability that ‘milk’ is a real context word of ‘cheese’?

𝑃(+ | milk, cheese)

– If the two words are semantically similar, we want this probability to be high.

2 What’s the probability that ‘robot’ is not a real context word of ‘cheese’?

𝑃(− | robot, cheese) = 1 − 𝑃(+ | robot, cheese)

– If the two words are semantically different, we want this probability to be low.

Word Embeddings  Learning Embeddings  Skip-gram model 28

Skip-gram with negative sampling

• We can get positive examples from the training data.

• We can get negative examples by randomly sampling words

from the entire vocabulary.

– Most likely, these will not be “real” context words (but it’s not guaranteed).

𝑃(+ | is, cheese)

𝑃(+ | from, cheese)

𝑃(+ | goat, cheese)

𝑃(+ | milk, cheese)

𝑃(− | wicked, cheese)

𝑃(− | doubts, cheese)

𝑃(− | hell, cheese)

𝑃(− | metal, cheese)

𝑃(− | mattress, cheese)

𝑃(− | therapy, cheese)

𝑃(− | packages, cheese)

𝑃(− | pizza, cheese)

Word Embeddings  Learning Embeddings  Skip-gram model 29

Intuition

• By training a model to distinguish between real and “fake” context words,

its weights should encode useful information about word similarity!

0

book

review

author

caves

milk

Garrotxa

Word Embeddings  Learning Embeddings  Skip-gram model 30

Trained word embeddings

• Pre-trained word embeddings can be downloaded for many languages.

–  NLPL word embeddings repository is a good resource for this.

• The length (or dimensionality) of the embedding vectors is a hyperparameter.

– Hyperparameter: a value that needs to be decided before training.

– In practice, lengths between 50 and 300 are most commonly chosen.

• Some alternatives to word2vec are  GloVe and  fastText.

– Similar ideas, but slightly different techniques.

Word Embeddings  Learning Embeddings  Skip-gram model 31

https://vectors.nlpl.eu/repository/
https://vectors.nlpl.eu/repository/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/

 Important Concepts

• distributional hypothesis

• word embedding

• continuous bag-of-words vs. skip-gram

• skip-gram with negative sampling

Word Embeddings  Learning Embeddings  Important Concepts 32

Vector Semantics

Vector semantics

• How can we analyze how similar vectors are?

• From linear algebra, we get the dot product
to compare two vectors 𝑣 and 𝑤 of length 𝑛:

𝑣 · 𝑤 = ∑
𝑛

𝑖=1
𝑣𝑖𝑤𝑖

book

author

milk

car

Word Embeddings  Vector Semantics 34

The dot product

𝑣 = (+2, +2)
𝑤 = (+2, +1)

v

w

𝑣 · 𝑤 = 6

𝑣 = (+2, +2)
𝑤 = (−2, −1)

v

w

𝑣 · 𝑤 = −6

𝑣 = (+2, +2)
𝑤 = (−2, +2)

vw

𝑣 · 𝑤 = 0

Word Embeddings  Vector Semantics 35

Cosine similarity

• The dot product is sensitive to the length of the vectors.

• The cosine similarity is the length-normalized dot product:

cos(𝑣,𝑤) =
𝑣
|𝑣|

·
𝑤
|𝑤|

=
𝑣 · 𝑤
|𝑣| |𝑤|

=
∑𝑑
𝑖=1 𝑣𝑖𝑤𝑖

√∑𝑑
𝑖=1 𝑣

2
𝑖 √∑𝑑

𝑖=1𝑤
2
𝑖

• Cosine similarity ranges from –1 (opposite) to +1 (identical).

Word Embeddings  Vector Semantics  Cosine Similarity 36

Cosine similarity, example

𝑣 = (+2, +2)
𝑤 = (+2, +1)

v

w

𝑣 · 𝑤 = 6

cos(𝑣,𝑤) =
𝑣
|𝑣|

·
𝑤
|𝑤|

=
6

√22 + 22√22 + 12

=
6

√8√5

≈
6

6.3246

≈ 0.9487

Word Embeddings  Vector Semantics  Cosine Similarity 37

Cosine similarity on word embeddings

• Intuitively, cosine similarity compares

angles between vectors.

– Vectors point in opposite directions: −1

– Vectors point in identical directions: +1

– Vectors orthogonal to each other: 0

book

author

milk

car

A

B

C

Which angle (A, B, C) does each of these cosine similarity scores belong to?

0.92 0.06 −0.32

Word Embeddings  Vector Semantics  Cosine Similarity 38

Cosine similarity on word embeddings

• Intuitively, cosine similarity compares

angles between vectors.

– Vectors point in opposite directions: −1

– Vectors point in identical directions: +1

– Vectors orthogonal to each other: 0

book

author

milk

car

−0.32

0.06

0.92

Which angle (A, B, C) does each of these cosine similarity scores belong to?

0.92 0.06 −0.32

Word Embeddings  Vector Semantics  Cosine Similarity 39

What does word2vec actually “learn”?

How can we analyze this with cosine similarity?

• We know that we can train word embeddings using word2vec.
– e.g. with SGNS (skip-gram with negative sampling)

Garrotxa is a cheese from goat milk

• We know that we can compare embeddings using cosine similarity.

But...

Which words actually end up being “similar” to each other?

Word Embeddings  Vector Semantics  Analyzing Embeddings 40

Analyzing what word2vec learns

•  Semantle turned this question into a game!

– Guess a word by seeing how close your guesses are in terms of cosine similarity.

• We can also visualize the embedding space.

– Not trivial: You cannot visualize, say, 300 dimensions…

– We need dimensionality reduction techniques to map vectors to 2 or 3 dimensions.

– Examples of such techniques are PCA or t-SNE.

• The  Embedding Projector demonstrates what this might look like.

Word Embeddings  Vector Semantics  Analyzing Embeddings 41

https://semantle.com/
https://semantle.com/
https://projector.tensorflow.org/
https://projector.tensorflow.org/

 Important Concepts

• dot product

• cosine similarity

• how to interpret cosine similarity

Word Embeddings  Vector Semantics  Important Concepts 42

	Reminder: From text to vectors
	Limitations of count-based vectors
	Alternative: Dense vectors
	Intuition: Similar words should be closer together in the vector space
	Neural Networks
	Artificial Neurons
	This is a neuron in your brain
	This is a neuron in an artificial neural network
	Artificial neuron, mathematically
	Non-linear activation functions
	An example calculation

	From Neurons to Networks
	From neurons to networks
	Neural networks for text classification

	Embedding Layers
	Embedding layers
	Embedding layers
	Embedding layers store word embeddings
	What can we do with word embeddings?

	
	Distributional Hypothesis
	Distributional semantics
	Distributional semantics in practice
	Example: Collocations
	Reminder…

	word2vec
	Continuous bag-of-words model

	Skip-gram model
	Continuous skip-gram model
	Skip-gram model as binary classification
	Skip-gram with negative sampling
	Intuition
	Trained word embeddings

	Vector Semantics
	Vector semantics
	The dot product
	Cosine Similarity
	Cosine similarity
	Cosine similarity, example
	Cosine similarity on word embeddings

	Analyzing Embeddings
	
	Analyzing what word2vec learns

