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Reminder: From text to vectors

&
y

Preprocessing e.g. lowercasing, stop-word removal

Tokenization e.g. with regular expressions Previously, we used
the bag-of-words
method to turn text
Vectorization e.g. bag-of-words representation into vectors.
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Limitations of count-based vectors

4 No notion of lexical similarity.
— ‘work’, ‘worked’, ‘works’, ‘working’
are all independent features
4 No notion of semantic similarity.

— ‘amazing’, fantastic’, ‘great’, ‘terrific’
are all independent features

4 Huge vectors lead to the curse of dimensionality.

— More features ~ harder to learn meaningful
patterns, more training data required
— Most elements are zero!
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Alternative: Dense vectors

 Count vectors (like bag-of-words) are  Alternative: learn vectors that are

— long (length of 20k, 50k, 100k or more) — short (length of 50-1000)
— sparse (most elements are zero) — dense (most elements are non-zero)

Why is this better?

@ Shorter vectors lead to smaller models and faster training.
— Need to store & learn fewer weights

© Dense vectors models can generalize better to new data.

e Dense vectors can capture similarity between words.
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Intuition: Similar words should be closer together in the vector space

great

.  fantastic
awesome

bad
e awful

terrible

- This type of vector is called a word embedding.
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In order to talk about embeddings,

we need to talk about neural networks.
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Neural Networks




This is a neuron in your brain
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Image: Bruce Blaus via Wikimedia
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https://commons.wikimedia.org/w/index.php?curid=28761830

This is a neuron in an artificial neural network
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Image: Wikimedia
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https://commons.wikimedia.org/wiki/File:Artificial_neuron_structure.svg

Artificial neuron, mathematically

- A single neuron computes a weighted sum of inputs, plus a bias:
Z :Z(wi'xi)+b
i

1

That is essentially the same as logistic regression!

« Instead of using z directly, we apply a non-linear activation function f:

y=f(z)
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Non-linear activation functions

e The sigmoid function ¢ is an

example of a non-linear function.

1
1+ e *

o(z) =
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An example calculation

- Suppose an artificial neuron has - Suppose the neuron receives this

learned these weights & bias:

0.2
w=103|,b=05
0.9

input vector x:

0.5
x=10.6
0.1

- With a sigmoid activation, we compute:

y=0(w-x+Db)=
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0(0.2-0.5+0.3-0.6+0.9-0.1+0.5)

0(0.87)
1

1 + ¢—0.87
0.7




From neurons to networks

« Neurons can be connected in a lot of ways to form an artificial neural network.

— Each arrow in the diagram represents a single neuron activation f(x; - w + b)
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Neural networks for text classification

x, = #(awesome) = 3 ---

X, = #(bad) =0 ---

« Neural networks can be trained like classifiers.

— In principle, they’re suitable for any text classification task!
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-> y; = P(positive)

-> ), = P(negative)



Let’s simplify a bit and assume
that the input to our neural network

is only a single word.



Embedding layers

- One-hot vectors encode the i-th word in the vocabulary by setting
_— liftn=1
nol0ifn £

- That means all entries are 0 except for one, which represents the index of the word.

— Like a “bag of words” with just a single word

awesome: i =1 — [1,0,0, 0]
bad:i =2 — [0,1,0,0]
good: i =3 — [0,0,1, 0]
terrible: i = 4 — [0,0,0, 1]
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Embedding layers

- In a neural network that takes one-hot vectors as input, the first layer (= neurons
that are activated) is called an embedding layer.
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Embedding layers

o In a neural network, an embedding layer stores a weight matrix W € R**™,
— k = size of the vocabulary, m = dimensionality of the embedding space

« Multiplying a one-hot vector v € N* with the weight matrix is like “looking up”

the row that corresponds to that word.

(759 8.32 =525 0.23  0.68] g'gg
0 0/ o] 5.56 —4.02 —8.63 —5.72 -4.73| _ 8'91
992 382 891 1.01 -253 1'01

| 840 <150 <408 858 68| | g
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Embedding layers store word embeddings

(759 8.32 -5.25 0.23 0.68] g'gg
0010 5.56 —4.02 —8.63 —5.72 —4.73| _ 8'91
992 3.82 891 1.01 —2.53 1'01

| 848 ~1.57 —4.08 353 —0.60| [ ,iq

- We can interpret this as a dense vector representation of the initial word, i.e.,
a word embedding!
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What can we do with word embeddings?

€@ We can train statistical classifiers with these embeddings as input.
— Alternative to bag-of-words!
— To represent an entire document, we could average the embeddings of all its words.

© We can use vector semantics to analyze which vectors are “close together”.
— e.g. run clustering algorithms to find “groups” of similar vectors

But maybe most importantly...

All neural network models use these vector representations internally, so
understanding them helps us understand what neural networks “learn”!
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8 Important Concepts

» artificial neural network

- sparse vs. dense vectors

- embedding layers

Word Embeddings > Neural Networks > Important Concepts
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Learning word embeddings




Distributional semantics

Distributional Hypothesis

Words with similar distributions have similar meanings.

« The “distribution” of a word is the context in which it appears.

“You shall know a word by the company it keeps.”
— John R. Firth

- If the distributional hypothesis is true, we can learn something about the

meaning of a word by studying the surrounding words.

Word Embeddings > Learning Embeddings » Distributional Hypothesis
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Distributional semantics in practice

- What can we learn about ‘Garrotxa’ from the
following sentences?

— Garrotxa is made from milk.

— Garrotxa pairs well with crusty country bread.

— Garrotxa is aged in caves to enhance mold
development.

Word Embeddings > Learning Embeddings > Distributional Hypothesis

Image: Jennifer Woodard Maderazo
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https://commons.wikimedia.org/w/index.php?curid=64008735

Example: Collocations

SEARCH

"4

g—
CDLLDC&TES‘ BOOK ’NDLIN | See also as: VERB Advanced optlons @j Coll
+ NOUN MEW WORD 7 | |+AD) NEW WORD ? + VERB MEW WORD ?
author I
review 1804 | 2.84 | | favorite El 23
2868 | 3.41 I library El 1382 | 6.06 best-selling El 6349 | 4.23 publish El
2385 | 2.58 club El 618 | 4.74 farthcoming El 1660 recommend El
2136 | 2.80 title El 587 | 6.25 self-help El 1306 review El
2040 | 3.45 copy El 502 | 3.58 audio lE 875 title El
2008 | 3.54 chapter El 429 | 4.25 printed El 550 entitle El
1949 | 3.62 I description El 351 | 2.62 upcoming El 467 research El
1836 | 2.51 reader El 258 | 3.36 published El 4437 kindle El
1757 | 3.09 cover El 255 | 6.60 self-published El 355 | 5.09 author El
1592 | 2.70 reading El 205 | 3.51 award-winning El 301 | 5.63 co-author El
— | I p— | I p—

Source: COCA (require registration)
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https://www.english-corpora.org/coca/

Reminder...

- We want to build a vector space where similar words are closer together!

review

e book
author e

0
(]
Garrotxa caves
[ ]

milk

Word Embeddings > Learning Embeddings » Distributional Hypothesis



word2vec

- word2vec is a popular embedding method based on these ideas.
— Proposed in 2013 by researchers from Google

— Very fast to train, code implementations freely available

QO Core idea

- Train a neural network on a word prediction task.

« Use the learned weights of that network as embeddings.

Word Embeddings » Learning Embeddings » word2vec
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Continuous bag-of-words model

- Train a classifier to predict a word from its context:

N N

Garrotxa is a cheese from goat milk

— Input: Bag-of-words of n surrounding words (= word order doesn’t actually matter!)

— Output: The target word

Word Embeddings » Learning Embeddings » word2vec
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Continuous skip-gram model

- Train a classifier to predict context words for a given input word:

NN

Garrotxa is a cheese from goat milk

— Many outputs: We'll frame this as a binary classification task.

Word Embeddings » Learning Embeddings > Skip-gram model
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Skip-gram model as binary classification

€@ What's the probability that ‘milk’is a real context word of ‘cheese”?
P(+ | milk, cheese)

— If the two words are semantically similar, we want this probability to be high.

© What's the probability that ‘robot’is not a real context word of ‘cheese”?
P(— | robot, cheese) = 1 — P(+ | robot, cheese)

— If the two words are semantically different, we want this probability to be low.
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Skip-gram with negative sampling

- We can get positive examples from the training data.

« We can get negative examples by randomly sampling words
from the entire vocabulary.

— Most likely, these will not be “real” context words (but it’s not guaranteed).

P(+ | is, cheese) P (- | wicked, cheese) P(- | mattress, cheese)
P(+ | from, cheese) P(- | doubts, cheese) P(— | therapy, cheese)
P(+ | goat, cheese) P(— | hell, cheese)  P(— | packages, cheese)
P(+ | milk, cheese) P(- | metal, cheese) P(— | pizza, cheese)

Word Embeddings » Learning Embeddings » Skip-gram model 20



Intuition

« By training a model to distinguish between real and “fake” context words,
its weights should encode useful information about word similarity!
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Trained word embeddings

« Pre-trained word embeddings can be downloaded for many languages.

— [4 NLPL word embeddings repository is a good resource for this.

 The length (or dimensionality) of the embedding vectors is a hyperparameter.

— Hyperparameter: a value that needs to be decided before training.

— In practice, lengths between 50 and 300 are most commonly chosen.

* Some alternatives to word2vec are [4 GloVe and [/ fastText.
— Similar ideas, but slightly different techniques.

Word Embeddings » Learning Embeddings > Skip-gram model
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https://vectors.nlpl.eu/repository/
https://vectors.nlpl.eu/repository/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/

8 Important Concepts

- distributional hypothesis
- word embedding
- continuous bag-of-words vs. skip-gram

- skip-gram with negative sampling

Word Embeddings » Learning Embeddings » Important Concepts
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Vector Semantics




Vector semantics

- How can we analyze how similar vectors are?

author

- From linear algebra, we get the dot product milk

/
to compare two vectors v and w of length n: \\ / g book

n
veow =) yw; /
i=1

car
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The dot product

v =(+2,+2)

w = (+2,+1)

v =(+2,+2)
w=(-2,-1)

Word Embeddings » Vector Semantics

v =(+2,+2)
w = (-2,+2)
w
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Cosine similarity

 The dot product is sensitive to the length of the vectors.

« The cosine similarity is the length-normalized dot product:

( ) vw V- w
cos(v, w) = : =
’ vl wl vl w
d
_ Q=1 Vil
d 2 |vd .2
\/Zizl Ui \/Zizl w;

« Cosine similarity ranges from —1 (opposite) to +1 (identical).

Word Embeddings » Vector Semantics > Cosine Similarity
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Cosine similarity, example

V= (+2, +2) COS(U, LU) — ﬁ . ﬁ
v w

w = (+2,+1)
6

37
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Cosine similarity on word embeddings

author
» Intuitively, cosine similarity compares
angles between vectors. milk ¢
¥ AN \/@ book
N B “

— Vectors point in opposite directions: —1

N
>

— Vectors point in identical directions: +1 \J

— Vectors orthogonal to each other: 0 car

Which angle (A, B, C) does each of these cosine similarity scores belong to?
092 0.06 -0.32
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Cosine similarity on word embeddings

author

- Intuitively, cosine similarity compares

) )

N
angles between vectors. milk o
book
7\” o.c|\/>
— Vectors point in opposite directions: —1 635
— Vectors point in identical directions: +1 \J
— Vectors orthogonal to each other: 0 car

Which angle (A, B, C) does each of these cosine similarity scores belong to?
092 0.06 -0.32
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What does word2vec actually “learn”?

How can we analyze this with cosine similarity?



« We know that we can train word embeddings using word2vec.
— e.g. with SGNS (skip-gram with negative sampling)

NN

Garrotxa is a cheese from goat milk

« We know that we can compare embeddings using cosine similarity.

Which words actually end up being “similar” to each other?

Word Embeddings » Vector Semantics > Analyzing Embeddings
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Analyzing what word2vec learns

* [4 Semantle turned this question into a game!

— Guess a word by seeing how close your guesses are in terms of cosine similarity.
« We can also visualize the embedding space.
— Not trivial: You cannot visualize, say, 300 dimensions...

— We need dimensionality reduction techniques to map vectors to 2 or 3 dimensions.

— Examples of such techniques are PCA or t-SNE.

* The (4 Embedding Projector demonstrates what this might look like.

Word Embeddings » Vector Semantics > Analyzing Embeddings
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https://semantle.com/
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8 Important Concepts

» dot product

- cosine similarity

- how to interpret cosine similarity

Word Embeddings > Vector Semantics > Important Concepts
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