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Reminder: From text to vectors



Preprocessing

Tokenization

Vectorization

Model

e.g. lowercasing, stop-word removal

e.g. with regular expressions

e.g. bag-of-words representation

Previously, we used 

the bag-of-words 

method to turn text 

into vectors.
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Limitations of count-based vectors

 No notion of lexical similarity.

– ‘work’, ‘worked’, ‘works’, ‘working’

are all independent features

 No notion of semantic similarity.

– ‘amazing’, ‘fantastic’, ‘great’, ‘terrific’

are all independent features

 Huge vectors lead to the curse of dimensionality.

– More features ⇝ harder to learn meaningful 

patterns, more training data required

– Most elements are zero!

a 1
adjuster 0
amazing 1

⋮ ⋮

it 3
item 0
just 1

⋮ ⋮

will 0
wish 1

works 3
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Alternative: Dense vectors

• Count vectors (like bag-of-words) are

– long (length of 20k, 50k, 100k or more)

– sparse (most elements are zero)

• Alternative: learn vectors that are

– short (length of 50–1000)

– dense (most elements are non-zero)

Why is this better?

1 Shorter vectors lead to smaller models and faster training.
– Need to store & learn fewer weights

2 Dense vectors models can generalize better to new data.

3 Dense vectors can capture similarity between words.
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Intuition: Similar words should be closer together in the vector space

0

awesome

great

fantastic

bad

terrible

awful

• This type of vector is called a word embedding.
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In order to talk about embeddings,

we need to talk about neural networks.



Outline

 Neural Networks

• Artificial Neurons

• From Neurons to Networks

• Embedding Layers

 Learning Embeddings

• Distributional Hypothesis

• word2vec

• Skip-gram model

 Vector Semantics

• Cosine Similarity

• Analyzing Embeddings
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Neural Networks



This is a neuron in your brain
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Image: Bruce Blaus via Wikimedia

https://commons.wikimedia.org/w/index.php?curid=28761830


This is a neuron in an artificial neural network

ᵠΣ

𝑤
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Activation
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Image: Wikimedia

https://commons.wikimedia.org/wiki/File:Artificial_neuron_structure.svg


Artificial neuron, mathematically

• A single neuron computes a weighted sum of inputs, plus a bias:

𝑧 = ∑
𝑖
(𝑤𝑖 · 𝑥𝑖) + 𝑏

↑

That is essentially the same as logistic regression!

• Instead of using 𝑧 directly, we apply a non-linear activation function 𝑓:

𝑦 = 𝑓(𝑧)
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Non-linear activation functions

• The sigmoid function 𝜎 is an 

example of a non-linear function.

𝜎(𝑧) =
1

1 + 𝑒−𝑧

−5 0 5
𝑧
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0.4

0.6

0.8

1.0

𝜎
(𝑧
)
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An example calculation

• Suppose an artificial neuron has 

learned these weights & bias:

𝑤 =
(

0.2
0.3
0.9)


, 𝑏 = 0.5

• Suppose the neuron receives this

input vector 𝑥:

𝑥 =
(

0.5
0.6
0.1)



• With a sigmoid activation, we compute:

𝑦 = 𝜎(𝑤 · 𝑥 + 𝑏) = 𝜎(0.2 · 0.5 + 0.3 · 0.6 + 0.9 · 0.1 + 0.5)
= 𝜎(0.87)

=
1

1 + 𝑒−0.87
= 0.7
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From neurons to networks

𝑥3

𝑥2

𝑥1
𝑦1

𝑦2

• Neurons can be connected in a lot of ways to form an artificial neural network.

– Each arrow in the diagram represents a single neuron activation 𝑓(𝑥𝑖 · 𝑤 + 𝑏)
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Neural networks for text classification

𝑥1 = #(awesome) = 3

𝑥2 = #(bad) = 0

𝑥3 = #(good) = 1

𝑦1 = 𝑃(positive)

𝑦2 = 𝑃(negative)

• Neural networks can be trained like classifiers.

– In principle, they’re suitable for any text classification task!
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Let’s simplify a bit and assume

that the input to our neural network

is only a single word.



Embedding layers

• One-hot vectors encode the 𝑖-th word in the vocabulary by setting

𝒗𝑛 = {1 if 𝑛 = 𝑖
0 if 𝑛 ≠ 𝑖

• That means all entries are 0 except for one, which represents the index of the word.

– Like a “bag of words” with just a single word

awesome: 𝑖 = 1 → [1, 0, 0, 0]
bad: 𝑖 = 2 → [0, 1, 0, 0]
good: 𝑖 = 3 → [0, 0, 1, 0]

terrible: 𝑖 = 4 → [0, 0, 0, 1]
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Embedding layers

𝑥1 = 0

𝑥2 = 0

𝑥3 = 1

𝑥4 = 0

𝑦1

𝑦2

𝑦3

𝑦4

• In a neural network that takes one-hot vectors as input, the first layer (= neurons 

that are activated) is called an embedding layer.
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Embedding layers

• In a neural network, an embedding layer stores a weight matrix 𝑾 ∈ ℝ𝑘×𝑚.

– 𝑘 = size of the vocabulary, 𝑚 = dimensionality of the embedding space

• Multiplying a one-hot vector 𝒗 ∈ ℕ𝑘 with the weight matrix is like “looking up” 

the row that corresponds to that word.

[0 0 1 0] ⋅

[

−7.59

5.56
9.92
8.48

8.32
−4.02
3.82

−1.57

−5.25
−8.63
8.91

−4.08

0.23
−5.72
1.01
3.53

0.68
−4.73
− 2.53
−0.60]



=

[


 9.92

3.82
8.91
1.01

−2.53]
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Embedding layers store word embeddings

[0 0 1 0] ⋅

[

−7.59

5.56
9.92
8.48

8.32
−4.02
3.82

−1.57

−5.25
−8.63
8.91

−4.08

0.23
−5.72
1.01
3.53

0.68
−4.73
−2.53
−0.60]



=

[


 9.92

3.82
8.91
1.01

−2.53]




• We can interpret this as a dense vector representation of the initial word, i.e., 

a word embedding!
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What can we do with word embeddings?

1 We can train statistical classifiers with these embeddings as input.

– Alternative to bag-of-words!

– To represent an entire document, we could average the embeddings of all its words.

2 We can use vector semantics to analyze which vectors are “close together”.

– e.g. run clustering algorithms to find “groups” of similar vectors

But maybe most importantly...

All neural network models use these vector representations internally, so 

understanding them helps us understand what neural networks “learn”!
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  Important Concepts

• artificial neural network

• sparse vs. dense vectors

• embedding layers
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Learning word embeddings



Distributional semantics

Distributional Hypothesis

Words with similar distributions have similar meanings.

• The “distribution” of a word is the context in which it appears.

“You shall know a word by the company it keeps.”

— John R. Firth

• If the distributional hypothesis is true, we can learn something about the 

meaning of a word by studying the surrounding words.
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Distributional semantics in practice

• What can we learn about ‘Garrotxa’ from the 

following sentences?

– Garrotxa is made from milk.

– Garrotxa pairs well with crusty country bread.

– Garrotxa is aged in caves to enhance mold 

development.
Image: Jennifer Woodard Maderazo
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https://commons.wikimedia.org/w/index.php?curid=64008735


Example: Collocations

↙︎
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Source: COCA (require registration)

https://www.english-corpora.org/coca/


Reminder…

• We want to build a vector space where similar words are closer together!

0

book

review

author

caves

milk

Garrotxa
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word2vec

• word2vec is a popular embedding method based on these ideas.

– Proposed in 2013 by researchers from Google

– Very fast to train, code implementations freely available

  Core idea

• Train a neural network on a word prediction task.

• Use the learned weights of that network as embeddings.
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Continuous bag-of-words model

• Train a classifier to predict a word from its context:

Garrotxa is a cheese from goat milk

– Input: Bag-of-words of 𝑛 surrounding words (= word order doesn’t actually matter!)

– Output: The target word

Word Embeddings  Learning Embeddings  word2vec 26



Continuous skip-gram model

• Train a classifier to predict context words for a given input word:

Garrotxa is a cheese from goat milk

– Many outputs: We’ll frame this as a binary classification task.
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Skip-gram model as binary classification

1 What’s the probability that ‘milk’ is a real context word of ‘cheese’?

𝑃(+ | milk, cheese)

– If the two words are semantically similar, we want this probability to be high.

2 What’s the probability that ‘robot’ is not a real context word of ‘cheese’?

𝑃(− | robot, cheese) = 1 − 𝑃(+ | robot, cheese)

– If the two words are semantically different, we want this probability to be low.
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Skip-gram with negative sampling

• We can get positive examples from the training data.

• We can get negative examples by randomly sampling words

from the entire vocabulary.

– Most likely, these will not be “real” context words (but it’s not guaranteed).

𝑃(+ | is, cheese)

𝑃(+ | from, cheese)

𝑃(+ | goat, cheese)

𝑃(+ | milk, cheese)

𝑃(− | wicked, cheese)

𝑃(− | doubts, cheese)

𝑃(− | hell, cheese)

𝑃(− | metal, cheese)

𝑃(− | mattress, cheese)

𝑃(− | therapy, cheese)

𝑃(− | packages, cheese)

𝑃(− | pizza, cheese)
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Intuition

• By training a model to distinguish between real and “fake” context words,

its weights should encode useful information about word similarity!

0

book

review

author

caves

milk

Garrotxa

Word Embeddings  Learning Embeddings  Skip-gram model 30



Trained word embeddings

• Pre-trained word embeddings can be downloaded for many languages.

–  NLPL word embeddings repository is a good resource for this.

• The length (or dimensionality) of the embedding vectors is a hyperparameter.

– Hyperparameter: a value that needs to be decided before training.

– In practice, lengths between 50 and 300 are most commonly chosen.

• Some alternatives to word2vec are  GloVe and  fastText.

– Similar ideas, but slightly different techniques.
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https://vectors.nlpl.eu/repository/
https://vectors.nlpl.eu/repository/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/


  Important Concepts

• distributional hypothesis

• word embedding

• continuous bag-of-words vs. skip-gram

• skip-gram with negative sampling
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Vector Semantics



Vector semantics

• How can we analyze how similar vectors are?

• From linear algebra, we get the dot product
to compare two vectors 𝑣 and 𝑤 of length 𝑛:

𝑣 · 𝑤 = ∑
𝑛

𝑖=1
𝑣𝑖𝑤𝑖

book

author

milk

car
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The dot product

𝑣 = (+2, +2)
𝑤 = (+2, +1)

v

w

𝑣 · 𝑤 = 6

𝑣 = (+2, +2)
𝑤 = (−2, −1)

v

w

𝑣 · 𝑤 = −6

𝑣 = (+2, +2)
𝑤 = (−2, +2)

vw

𝑣 · 𝑤 = 0

Word Embeddings  Vector Semantics 35



Cosine similarity

• The dot product is sensitive to the length of the vectors.

• The cosine similarity is the length-normalized dot product:

cos(𝑣,𝑤) =
𝑣
|𝑣|

·
𝑤
|𝑤|

=
𝑣 · 𝑤
|𝑣| |𝑤|

=
∑𝑑
𝑖=1 𝑣𝑖𝑤𝑖

√∑𝑑
𝑖=1 𝑣

2
𝑖 √∑𝑑

𝑖=1𝑤
2
𝑖

• Cosine similarity ranges from –1 (opposite) to +1 (identical).
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Cosine similarity, example

𝑣 = (+2, +2)
𝑤 = (+2, +1)

v

w

𝑣 · 𝑤 = 6

cos(𝑣,𝑤) =
𝑣
|𝑣|

·
𝑤
|𝑤|

=
6

√22 + 22√22 + 12

=
6

√8√5

≈
6

6.3246

≈ 0.9487
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Cosine similarity on word embeddings

• Intuitively, cosine similarity compares 

angles between vectors.

– Vectors point in opposite directions: −1

– Vectors point in identical directions: +1

– Vectors orthogonal to each other: 0

book

author

milk

car

A

B

C

Which angle (A, B, C) does each of these cosine similarity scores belong to?

0.92 0.06 −0.32
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Cosine similarity on word embeddings

• Intuitively, cosine similarity compares 

angles between vectors.

– Vectors point in opposite directions: −1

– Vectors point in identical directions: +1

– Vectors orthogonal to each other: 0

book

author

milk

car

−0.32

0.06

0.92

Which angle (A, B, C) does each of these cosine similarity scores belong to?

0.92 0.06 −0.32
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What does word2vec actually “learn”?

How can we analyze this with cosine similarity?



• We know that we can train word embeddings using word2vec.
– e.g. with SGNS (skip-gram with negative sampling)

Garrotxa is a cheese from goat milk

• We know that we can compare embeddings using cosine similarity.

But...

Which words actually end up being “similar” to each other?
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Analyzing what word2vec learns

•  Semantle turned this question into a game!

– Guess a word by seeing how close your guesses are in terms of cosine similarity.

• We can also visualize the embedding space.

– Not trivial: You cannot visualize, say, 300 dimensions…

– We need dimensionality reduction techniques to map vectors to 2 or 3 dimensions.

– Examples of such techniques are PCA or t-SNE.

• The  Embedding Projector demonstrates what this might look like.
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https://semantle.com/
https://semantle.com/
https://projector.tensorflow.org/
https://projector.tensorflow.org/


  Important Concepts

• dot product

• cosine similarity

• how to interpret cosine similarity
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