

Masked Language Models & Subword Tokenization

Marcel Bollmann

Department of Computer Science (IDA)

- We learned about **language modelling** using simple n -gram models.

$$P(\text{'cheese'} \mid \text{'Garrotxa is a'})$$

- We learned that **word embeddings** from neural networks can give us more powerful word representations.



What if we do language modeling with neural networks?

Shortcomings of the word2vec approach

- Word embeddings from e.g. word2vec are **static**.
 - There is one fixed embedding vector for each word, regardless of the context.
- **But:** The meaning of words is very often **context-dependent**.
 - 1
 - She likes to eat **cookies** with milk.
 - This website uses **cookies** to store your information.
 - 2
 - He has an **interest** in machine learning.
 - The bank's **interest** rate went up.

Outline

• Masked Language Modelling

- BERT
- Transformers
- Contextual Embeddings

• Subword Tokenization

- Motivation
- Byte-Pair Encoding
- Examples

• Pre-Training and Fine-Tuning

- Pre-Training
- Fine-Tuning
- Capabilities of BERT Models

What is Masked Language Modelling?

Masked language modelling

- Previously: Language modelling as **predicting the next word** in a sequence

$$P(\text{'cheese'} \mid \text{'Garrotxa is a'})$$
$$P(\text{'milk'} \mid \text{'cheese from goat'})$$

- Masked language modelling: **predicting a masked-out word** in a sequence

$$P(\text{'cheese'} \mid \text{'Garrotxa is a _____ from goat milk'})$$

- This uses context from both **before and after** the word to be predicted!

BERT: Bidirectional Encoder Representations from Transformers

- BERT is a neural network model trained on **masked language modelling**.
 - Based on the Transformer architecture
- It **outperformed all other models** at the time of its release (2018) on all kinds of different language technology tasks & benchmarks.
 - Spawned an entire “family” of similar models for specific tasks & languages
- It can be used for **text classification** tasks, but also for **sequence labelling**.
(→ *next lecture!*)

Masked language modelling in BERT

- For training, 15% of tokens are **randomly selected** to be part of the masking.

‘Garrotxa is a cheese from **goat** milk’

- 1 80% chance that the token is **replaced** with special token ‘**[MASK]**’:

‘Garrotxa is a cheese from **[MASK]** milk’

- 2 10% chance that the token is **replaced** with another **random token**:

‘Garrotxa is a cheese from **prevent** milk’

- 3 10% chance that the token is **left unchanged**:

‘Garrotxa is a cheese from **goat** milk’

Masked language modelling in BERT

- In all three cases, the model is then **trained to predict the word** that belongs in the selected position.

- 1 ‘Garrotxa is a cheese from [MASK] milk’ → ‘goat’
- 2 ‘Garrotxa is a cheese from prevent milk’ → ‘goat’
- 3 ‘Garrotxa is a cheese from goat milk’ → ‘goat’

We need to talk about **transformers...**

From words/documents to sequences

- For **text classification**, we talked about models that...
 - Take **an entire document** as **input**
 - Predict a **single label** for the entire document as **output**
- For **word embeddings**, we talked about models that...
 - Take a **bag of words** as **input**
 - Predict a **single label** (“real”/“fake” context words) as **output**
- For **language modelling**, we talked about models that...
 - Take an ***n*-gram** of fixed size as **input**
 - Predict a **single word** that comes next as **output**
- We really want to model **language as a sequence of tokens!**

Transformers

- The **transformer** is a specific kind of neural network architecture.
 - Introduced in 2017 by [Vaswani et al.](#) (paper with *over 200,000 citations* by now!)
- It is built upon the **attention mechanism**, a technique that allows the neural network to “look at” and put different “weight” on different tokens in a sentence.

Side note

This visual storytelling article explains the idea behind transformers very elegantly:

- **Generative AI exists because of the transformer**

The intuition behind attention

Remember the distributional hypothesis...

Words that appear in similar contexts have similar meanings.

- To determine meaning, **some words are more important** than others:

She likes to **eat** cookies with **milk**.

This **website** uses cookies to **store** your **information**.

- A transformer computes **contextual embeddings** that differ based on context!

Masked language modelling with transformers

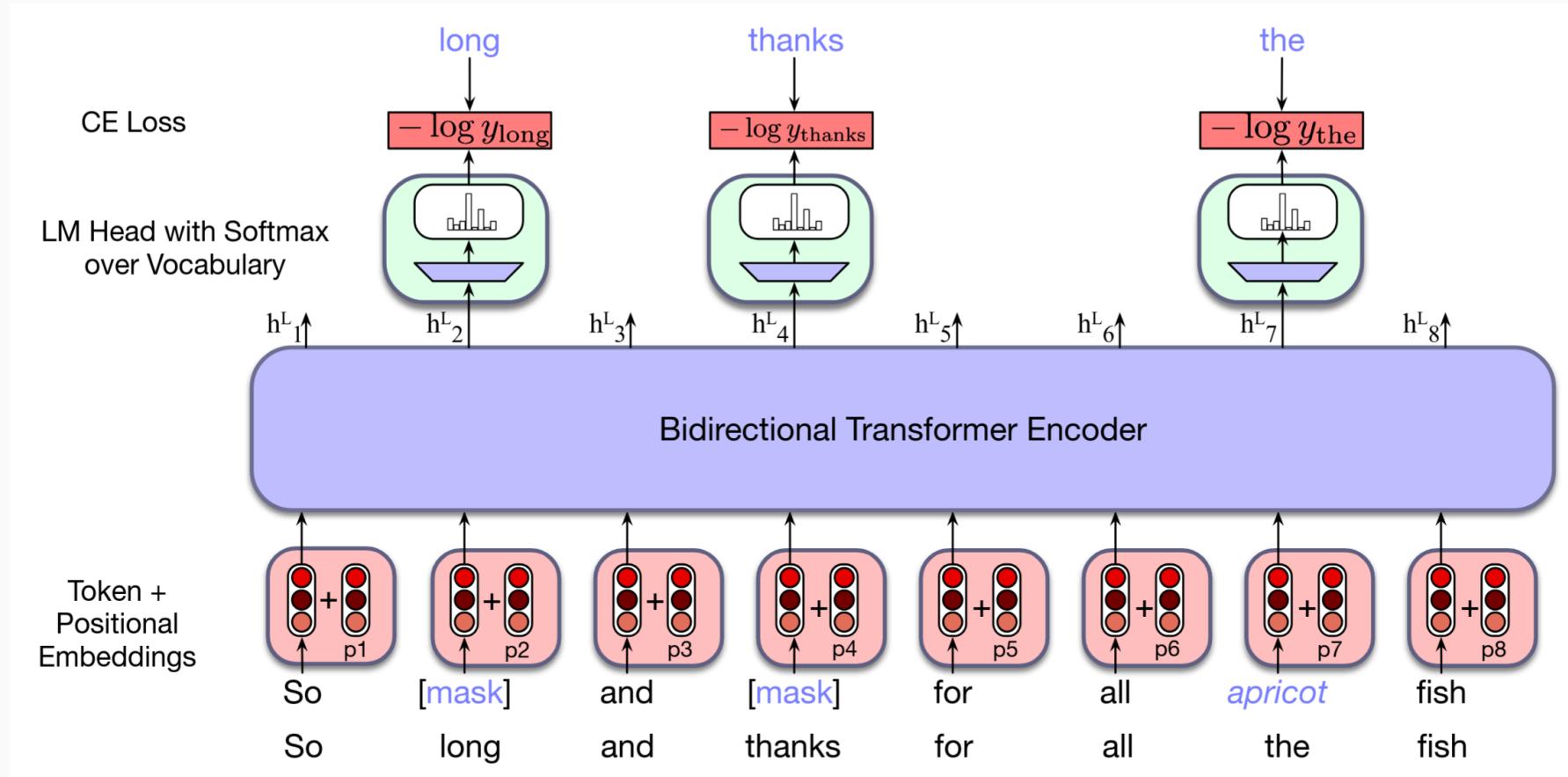


Figure 10.3 from [Jurafsky & Martin \(2026\)](#)

What kind of knowledge can a model “learn”
from masked language modelling?

Consider these examples...

- 1 ‘The capital of _____ is Berlin.’
- 2 ‘Kenya’s athlete broke the world _____ in long jump.’
- 3 ‘I know this man, I’ve seen _____ before!’
- 4 ‘This movie was so _____ that I fell asleep.’
- 5 ‘Yesterday we met _____ new neighbours.’

Consider these examples...

- 1 'The capital of **Germany** is Berlin.' World knowledge
- 2 'Kenya's athlete broke the world **record** in long jump.' Lexical knowledge
- 3 'I know this man, I've seen **him** before!' Co-reference
- 4 'This movie was so **boring** that I fell asleep.' Sentiment
- 5 'Yesterday we met **our/the/*taxi** new neighbours.' Grammatical constraints

Intuition

Training a large neural network on this masked language modelling task will result in all these different **types of knowledge** being **encoded** in its parameters.

Contextual embeddings

- word2vec produces **static embeddings**, i.e. one for each word **type**.
 - type \approx dictionary entry
- BERT produces **contextual embeddings**, i.e. one for each word **instance**.
 - instance \approx the word in context/in a given sentence

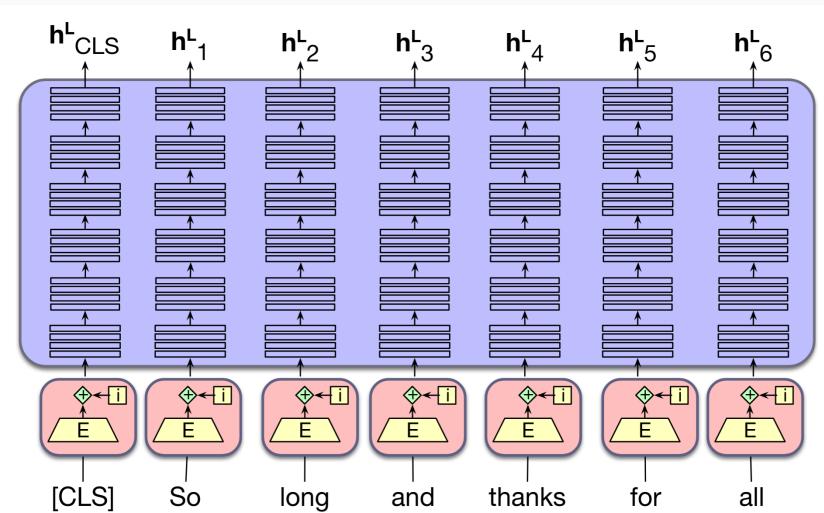


Figure 10.5 from Jurafsky & Martin (2026)

Contextual embeddings for the token “die”

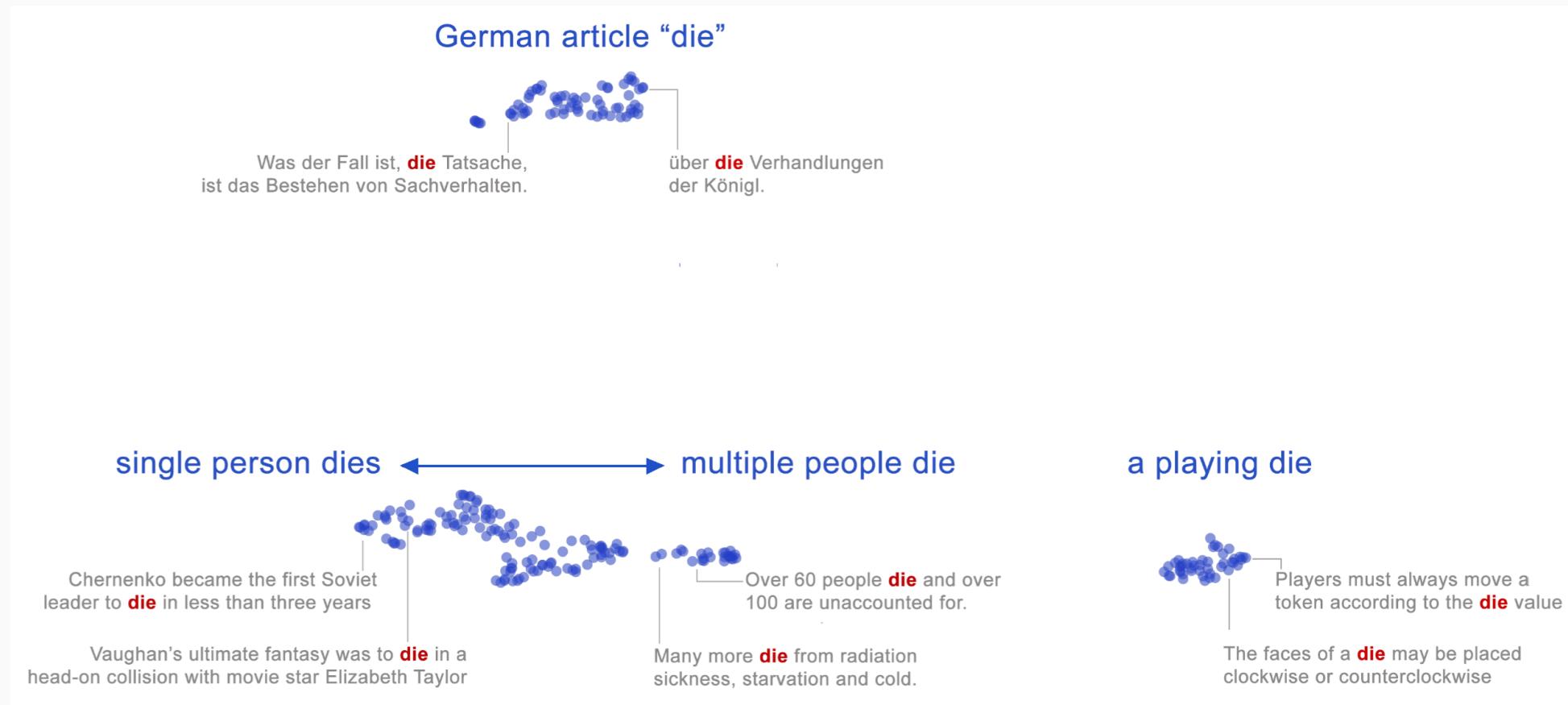


Figure 10.6 from Jurafsky & Martin (2026)

Important Concepts

- masked language modelling
- BERT
- contextual embeddings

- For more **technical** details, see [Jurafsky & Martin \(2026\)](#):
 - Chapter 8: Transformers
 - Chapter 10: Masked Language Models

Pre-Training and Fine-Tuning

or:

What can we **do** with BERT models?

Many ways to use a BERT model

- 1 We can use a BERT model to **predict words**.
 - But: Expects context from left to right, so not as useful for e.g. predictive typing.
- 2 We can **extract embeddings** from a BERT model and work with them.
 - Contextual word embeddings, sentence embeddings, document embeddings...
 - Applications: Clustering, classification, semantic search...
- 3 We can **fine-tune** a BERT model on any other classification task!

The pre-train and fine-tune paradigm

1 Pre-train a BERT model on the masked language modelling task.

- Training data is “plain text”, no annotations required – we can easily get lots of data!
- “Pre”-training because this is not the end goal, just a first step.
- Requires **powerful hardware** and quite some time...

2 Fine-tune the model on whatever classification task we are interested in.

- Fine-tuning \approx continuing to train, but with different data & labels
- Much more **efficient**: model has already learned a lot of knowledge!

Core idea:

Re-using the general knowledge
that a pre-trained model has learned
makes **training on others tasks** much easier
than starting “from scratch”!

BERT pre-training in numbers

Model	Parameters	Training Data	Training Hardware & Time
BERT-base	110 M	16 GB	4× Cloud TPUs for 4 days
BERT-large	340 M	16 GB	16× Cloud TPUs for 4 days
RoBERTa-base	110 M	160 GB	1024× V100 GPUs
RoBERTa-large	340 M	160 GB	1024× V100 GPUs
ModernBERT-base	149 M	8000 GB*	8× H100 GPUs for 10 days
ModernBERT-large	395 M	8000 GB*	8× H100 GPUs for 22 days

*estimated

Sources: [Devlin et al. \(2019\)](#); [RoBERTa-base model card](#); [Warner et al. \(2024\)](#)

Environmental impact

- We can measure the **energy and carbon footprints** of BERT.
 - Depends on hardware; numbers below are from running on $4 \times$ RTX 8000 GPUs

Task	Emissions (kg CO ₂)
Pre-training	174.600
Fine-tuning on MNLI (Natural Language Inference)	0.445
Fine-tuning on IMDB (Sentiment Analysis)	0.072
Fine-tuning on SQuAD v2 (Question Answering)	0.377

- **Fine-tuning** is orders of magnitude **more efficient** than pre-training!

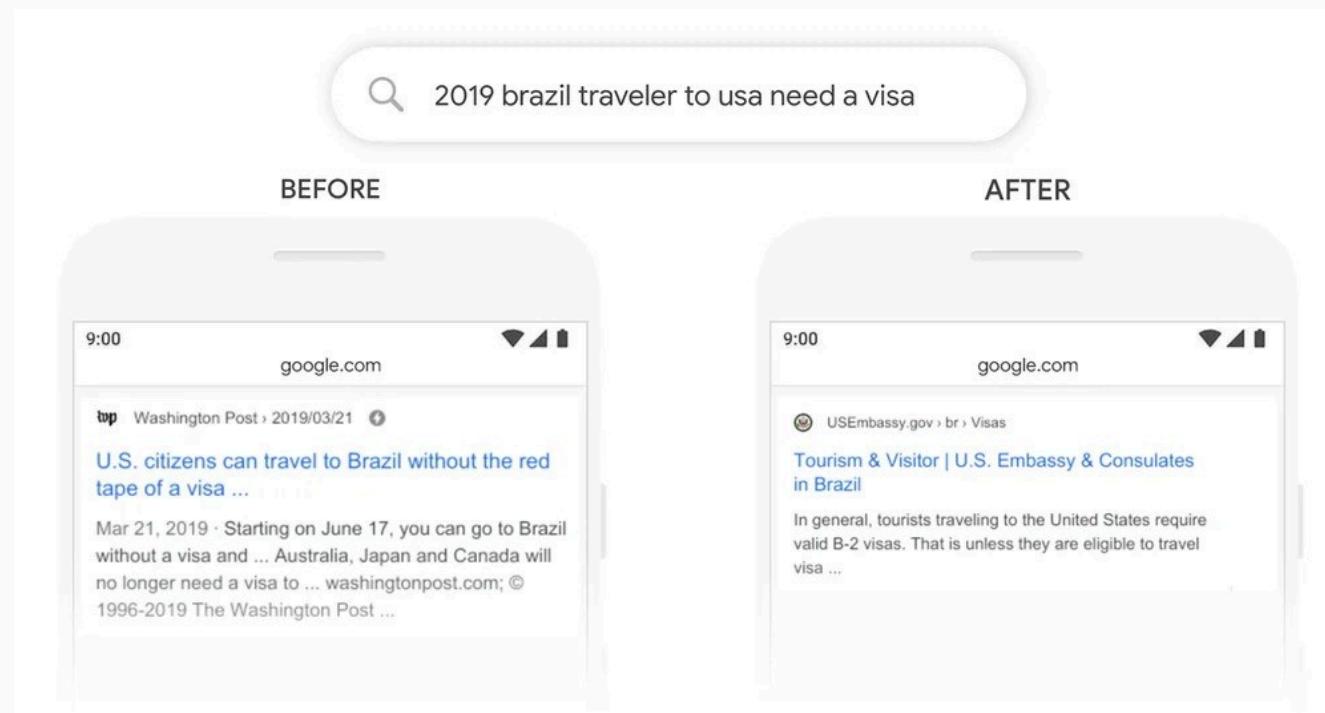
Source: [Wang et al. \(2023\)](#)

How to fine-tune a BERT model?

- 1 Many **pre-trained BERT models** are made freely available & can be downloaded from the **HuggingFace Model Hub**.
 - General-purpose **English** models: *BERT, RoBERTa, ModernBERT*
 - General-purpose **multilingual** models: *XLM-RoBERTa, mmBERT*
 - **Language-specific** models: *CamemBERT, WangchanBERTa, BERT-Swedish*
 - **Domain-specific** models: *NewsBERT, MusicBERT, ChemBERTa*
 - **Smaller** models: *DistilBERT, TinyBERT*
- 2 The **text classification guide** from HuggingFace is a good place to get started with fine-tuning your own model.
 - Remember that you will most likely need access to a GPU.

BERT improved Google Search

- Before BERT, Google Search was bad at **capturing word-order dependencies**.
 - “Brazil to USA” vs. “USA to Brazil”



Source: Nayak (2019)

BERT performs well on “language understanding” benchmarks

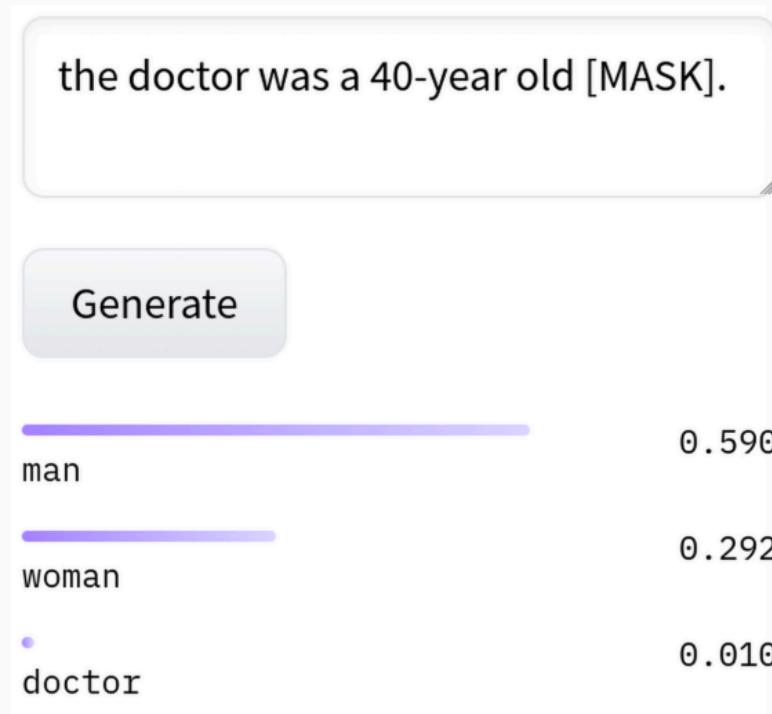
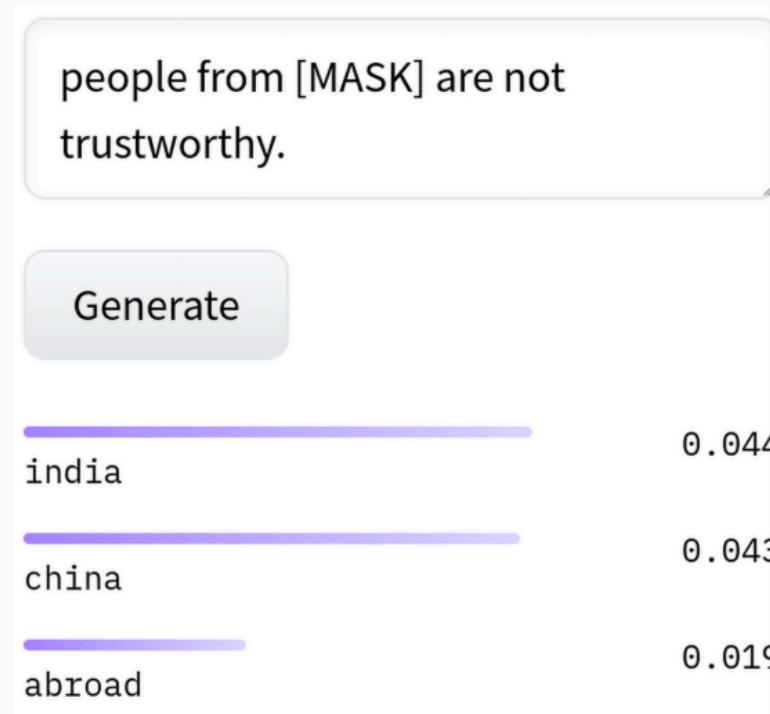
BERT’s Performance on GLUE:

Task	Average	Grammatical	Sentiment Analysis	Similarity	Paraphrase	Question Similarity	Contradiction	Answerable	Entail
BERTLARGE	82.1	60.5	94.9	86.5	89.3	72.1	86.7/85.9	92.7	70.1
BERTBASE	79.6	52.1	93.5	85.8	88.9	71.2	84.6/83.4	90.5	66.4
OpenAI GPT	75.1	45.4	91.3	80.0	82.3	70.3	82.1/81.4	87.4	56.0
Pre-OpenAI SOTA	74.0	35.0	93.2	81.0	86.0	66.1	80.6/80.1	82.3	61.7
BiLSTM+ELM o+Attn	71.0	36.0	90.4	73.3	84.9	64.8	76.4/76.1	79.8	56.8

Source: Muller (2022)

BERT encodes societal biases

- BERT models can encode **gender bias** and other **harmful stereotypes**.



Try it yourself: [BERT base model on Huggingface](#)

Important Concepts

- pre-training vs. fine-tuning
- model bias
- where to find pre-trained models (*might be relevant for your project!*)

Subword Tokenization

Previously...

Definition

Tokenization is the task of segmenting a text into *words* or *subword* units.

- So far, we mostly assumed that “tokens \approx words”, with some special treatment of e.g. punctuation marks or abbreviations.

Before Tokenization

"This hotel was awesome!"

After Tokenization

["This", "hotel", "was", "awesome", "!"]

Why is “word level” not good enough?

- We can only have a **fixed vocabulary** of tokens.
- Words that are not part of the vocabulary **cannot be represented at all** in our model.
 - Remember: UNK token as a workaround...
- There is no such thing as a “list of all words,” and **new words are created** all the time →

Source: [@nyt-first-said.bsky.social](https://nyt-first-said.bsky.social)

Tokens vs. bytes or characters

- Let's take this input sentence with **four tokens**:

```
['It', 'is', 'awesome', '!']
```

- Why can't we simply use **Unicode characters** as tokens instead?

```
['I', 't', ' ', 'i', 's', ' ', 'a', 'w', 'e', 's', 'o', 'm', 'e', '!']
```

- ⚡ Input **sequences get very long** – harder to learn information from
- ⚡ Characters are **much less informative** than words (→ *poor inductive bias*)

Subword tokenization

- **Subword tokenization** uses a vocabulary consisting of words, characters, and “subwords”, *i.e.* units that are smaller than words.

```
['These', 'people', 'are', 'techno', '#fe', '#uda', '#lists', '.']
```

indicates continuation of previous word

- **Common words** are represented by a single token each.
 - Better inductive bias & shorter sequence length
- **Rare or new words** are represented by smaller units, *i.e.* subwords.
 - We will never have out-of-vocabulary words!

Byte-pair encoding

- **Byte-pair encoding (BPE)** is a commonly used subword tokenization algorithm.
 - Originally a data compression technique!
 - Proposed for use in tokenization by **Sennrich et al. (2016)**

playing, seeing, wailing, fighting, rubbing, coding, eating, ...

- ‘ing’ is a very frequent combination of characters, therefore...
- ‘ing’ should get its own token

- BPE iteratively **merges the most frequent pairs** of adjacent characters/tokens.

Byte-pair encoding: training

- We need **training data** to train the BPE tokenizer.
 - This can be the same data that will be used to train the model later.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, ...

- We also need to decide on the **size of the vocabulary**.
 - **Hyperparameter** of the algorithm, *i.e.* needs to be set before training

Byte-pair encoding: algorithm

- Start with a vocabulary of all unique **characters**.

Training data
i t _ w a s _ t h e _ b e s t _ o f _ t i m e s _ i t _ w a s _ t h e _ w o r s t _ o f _ t i m e s _ i t _ w a s _ t h e _ a g e _ o f _ w i s d o m _ i t _ w a s _ t h e _ a g e _ o f _ ...

Vocabulary
a b d e f g h i l m n o r s t w _

Byte-pair encoding: algorithm

- Start with a vocabulary of all unique **characters**.
- BPE tokenizers **never merge across word boundaries**.
 - We can start by splitting up the document after each word boundary and counting the words.

Training data	
4	i t _
4	w a s _
4	t h e _
4	o f _
2	t i m e s _
2	a g e _
1	b e s t _
1	w o r s t _
1	w i s d o m _

Vocabulary
a b d e f g h i l m n o r s t w _

Byte-pair encoding: algorithm

- 1 **Find the most frequent pair** of adjacent tokens in the training data.
- 2 **Create a new token** by merging the most frequent pair.
- 3 **Update the training data** to use the new token.
- 4 **Repeat** until desired vocabulary size is reached.

Training data

4	i t_	2	a g e _
4	w a s _	1	b e s t_
4	t h e _	1	w o r s t_
4	o f _	1	w i s d o m _
2	t i m e s _		

Vocabulary

a b d e f g h i l m n o r s t w _
t_

Byte-pair encoding: algorithm

- 1 **Find the most frequent pair** of adjacent tokens in the training data.
- 2 **Create a new token** by merging the most frequent pair.
- 3 **Update the training data** to use the new token.
- 4 **Repeat** until desired vocabulary size is reached.

Training data

4	i t_	2	a g e_
4	w a s_	1	b e s t_
4	t h e_	1	w o r s t_
4	o f _	1	w i s d o m _
2	t i m e s_		

Vocabulary

a b d e f g h i l m n o r s t w_
t_ s_ e_ **it_**

Byte-pair encoding: segmenting new text

- With the learned vocabulary, we can now **tokenize new datasets**.
 - e.g. a test dataset we want to use
- Example: “*wit*” could be represented as `['w', 'it_']`
- But:** why not `['wi', 't_']` or `['w', 'i', 't_']`?
 - There are often multiple ways to represent the same word with subword tokens!
 - One (deterministic) solution: Run the merges in the same order as during training

Vocabulary

a b d e f g h i l m n o r s t w _
th wa wi e_ s_ t_ es_ it_ st_ was_

Byte-pair encoding: turning tokens back into text

- Mapping from tokens back to text, a.k.a. **decoding**, is easy!
 - ...as long as we have a word boundary marker

```
['the\u201d', 'age\u201d', 'of\u201d', 'fo', 'ol', 'ish', 'ness\u201d']
```


"the age of foolishness"

- There are different conventions for how to mark word boundaries...

```
['\u201dthe', '\u201dage', '\u201dof', '\u201dfo', 'ol', 'ish', 'ness']
```

```
['the', '\u02c6age', '\u02c6of', '\u02c6fo', 'ol', 'ish', 'ness']
```

```
['the', 'age', 'of', 'fo', '##ol', '##ish', '##ness']
```

Example: BERT tokenizer

- How would BERT tokenize the opening of [Mary Shelley's Frankenstein](#)?

You will **re ##jo ##ice** to hear that no disaster has accompanied the commencement of an enterprise which you have regarded with such evil **fore ##bo ##ding ##s** . I arrived here yesterday , and my first task is to assure my dear sister of my welfare and increasing confidence in the success of my undertaking .

Example: BERT tokenizer

- How would BERT tokenize **a paragraph about Linköping University?**

The origins of **Link ##ö ##ping** University date back to the 1960s . In 1965 , The Swedish National Legislative Assembly (**R ##ik ##s ##da ##g**) decided to locate some programmes within the fields of technology and medicine to **Link ##ö ##ping** .

Properties of BPE tokenization

- BERT has a fixed vocabulary size, so **rare words** get split up into multiple tokens.

forebodings —> fore ##bo ##ding ##s

- BERT was trained on English data, so **non-English words** will have been rare.

Riksdag —> R ##ik ##s ##da ##g

- But this is still better than **not being able to represent the word** at all!
 - Replacing these words with [UNK] loses a lot of information.

Important Concepts

- subword tokenization
- byte-pair encoding (BPE) — *conceptually*
- advantages & drawbacks of subword tokenization