

Sequence Labelling

Part-of-Speech Tagging & Named Entity Recognition

Marcel Bollmann

Department of Computer Science (IDA)

What is sequence labelling?

Definition

Sequence labelling comprises all tasks that annotate **each item in a sequence** (e.g. *each token in a sentence*) with predefined, discrete classes.

- The **input** is a **text document** written in natural language.
 - just as before
- The **output** is a **label** for **each token** in the document.

Reminder: BERT is a sequence model

- BERT produces one **output vector** for each **input vector**.
 - We can **fine-tune** it on any sequence labelling task!

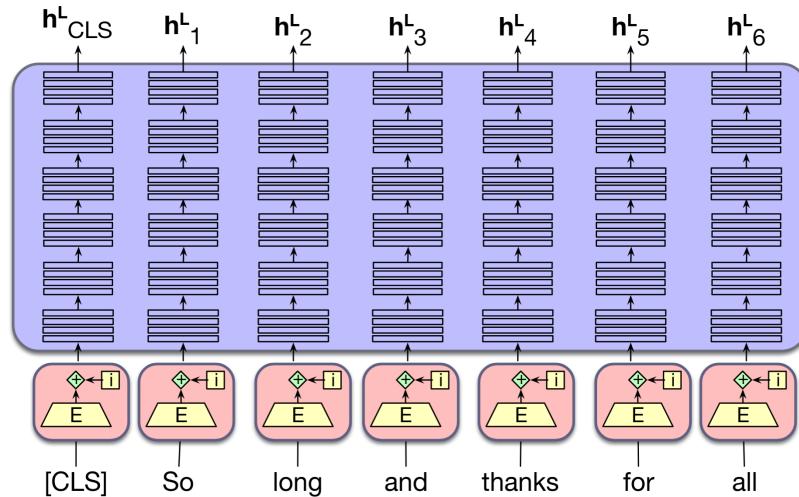


Figure 10.5 from **Jurafsky & Martin (2026)**

Outline

• **Part-of-Speech Tagging**

- Parts of Speech
- Challenges
- Methods
- Evaluation

• **Named Entity Recognition**

- Named Entities
- Challenges
- BIO Scheme
- Evaluation

Part-of-Speech Tagging

Parts of speech

- A **part of speech** is a category of words that have similar grammatical properties.

<i>Squirrels</i>	<i>are</i>	<i>adorable</i>	<i>creatures</i>
noun	verb	adjective	noun

- Dionysius Thrax of Alexandria (\approx 100 BCE) described eight parts of speech.
 - noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- In language technology, there are different **part-of-speech (POS) tagsets**.
 - different levels of granularity, or tailored to different languages

“Universal Dependencies” tagset

Tag	Description	Example
Open Class	ADJ Adjective: noun modifiers describing properties	<i>red, young, awesome</i>
	ADV Adverb: verb modifiers of time, place, manner	<i>very, slowly, home, yesterday</i>
	NOUN words for persons, places, things, etc.	<i>algorithm, cat, mango, beauty</i>
	VERB words for actions and processes	<i>draw, provide, go</i>
	PROPN Proper noun: name of a person, organization, place, etc..	<i>Regina, IBM, Colorado</i>
	INTJ Interjection: exclamation, greeting, yes/no response, etc.	<i>oh, um, yes, hello</i>
Closed Class Words	ADP Adposition (Preposition/Postposition): marks a noun's spacial, temporal, or other relation	<i>in, on, by, under</i>
	AUX Auxiliary: helping verb marking tense, aspect, mood, etc.,	<i>can, may, should, are</i>
	CCONJ Coordinating Conjunction: joins two phrases/clauses	<i>and, or, but</i>
	DET Determiner: marks noun phrase properties	<i>a, an, the, this</i>
	NUM Numeral	<i>one, two, 2026, 11:00, hundred</i>
	PART Particle: a function word that must be associated with another word	<i>'s, not, (infinitive) to</i>
	PRON Pronoun: a shorthand for referring to an entity or event	<i>she, who, I, others</i>
	SCONJ Subordinating Conjunction: joins a main clause with a subordinate clause such as a sentential complement	<i>whether, because</i>
	PUNCT Punctuation	<i>;, ()</i>
Other	SYM Symbols like \$ or emoji	<i>\$, %</i>
	X Other	<i>asdf, qwfg</i>

Figure 17.1 from [Jurafsky & Martin \(2026\)](#); more details: [Universal POS tagset](#)

Examples

1 *The quick brown fox jumped over the lazy dog.*

1	<i>The</i>	<i>quick</i>	<i>brown</i>	<i>fox</i>	<i>jumped</i>	<i>over</i>	<i>the</i>	<i>lazy</i>	<i>dog</i>	.
	DET	ADJ	ADJ	NOUN	VERB	ADP	DET	ADJ	NOUN	PUNCT

2 *Preliminary findings were reported in today's*

2	<i>Preliminary</i>	<i>findings</i>	<i>were</i>	<i>reported</i>	<i>in</i>	<i>today</i>	<i>'s</i>
	ADJ	NOUN	AUX	VERB	ADP	NOUN	PART

New England Journal of Medicine

<i>New</i>	<i>England</i>	<i>Journal</i>	<i>of</i>	<i>Medicine</i>
PROPN	PROPN	PROPN	ADP	PROPN

Part-of-speech tagging

Definition

Part-of-speech (POS) tagging is the task of tagging each word/token in a sentence with its part of speech according to some pre-defined tagset.

- Can provide **useful information** for other language technology tasks.
 - Sentiment: often expressed by adjectives, could analyse them separately
 - Text-to-speech: correct pronunciation sometimes depends on part of speech
 - ▶ e.g. “lead” or “object”
- Can be used for **linguistic analysis** of texts.
 - Stylometry (e.g. authorship attribution, forensic linguistics), linguistic change

Why do we need sequence labelling for that?

- 1 *a small building in the **back***
NOUN
- 2 *earnings growth took a **back** seat*
ADJ
- 3 *a majority of politicians **back** the bill*
VERB
- 4 *enable the country to buy **back** the debt*
PART
- 5 *I was twenty-one **back** then*
ADV

Why do we need sequence labelling for that?

- Many word types are **unambiguous** when it comes to part of speech.
 - ‘*Marcel*’ is always **PROPN**, ‘*hesitantly*’ is always **ADV**
 - $\approx 85\%$ of word types in English are unambiguous
- However, **ambiguous** word types tend to be **very common**.
 - $\approx 60\%$ of all word *tokens* (or *instances*) that we see in English

Ambiguity causes combinatorial explosion

- Part-of-speech tags are **not independent** of each other.
 - e.g. predicting **DET** means that the next word is likely to be **ADJ** or **NOUN**
- Which **sequence** of part-of-speech tags has the **highest probability**?

<i>The</i>	<i>quick</i>	<i>brown</i>	<i>fox</i>	<i>jumped</i>	<i>over</i>	<i>the</i>	<i>lazy</i>	<i>dog</i>	.
DET	ADJ	ADJ	NOUN	VERB	ADP	DET	ADJ	NOUN	PUNCT
	ADV	NOUN	VERB		ADJ			VERB	
	NOUN	VERB			ADV				

- Combinatorial explosion**: there are **108** possible sequences in this example!

Algorithms for POS tagging

- Classifiers like Naive Bayes and Logistic Regression are not really suitable here since **they don't model sequential inputs/outputs**.
- There are “traditional” machine learning algorithms that do well at this task:
 - Hidden Markov models (HMM)
 - Conditional random fields (CRF)
 - Maximum entropy Markov models (MEMM)
- Here, we'll focus on neural networks in the form of **fine-tuned BERT models**.

Reminder: The pre-train and fine-tune paradigm

- 1 Pre-train **Download a pre-trained BERT model.**
 - e.g. from the [HuggingFace Model Hub](#)
- 2 Fine-tune the model on whatever classification task we are interested in.
 - e.g part-of-speech tagging!
 - If you simply want to **use an existing POS tagger** (that's already trained), the [spaCy](#) models can be a good choice. ([web demo](#))

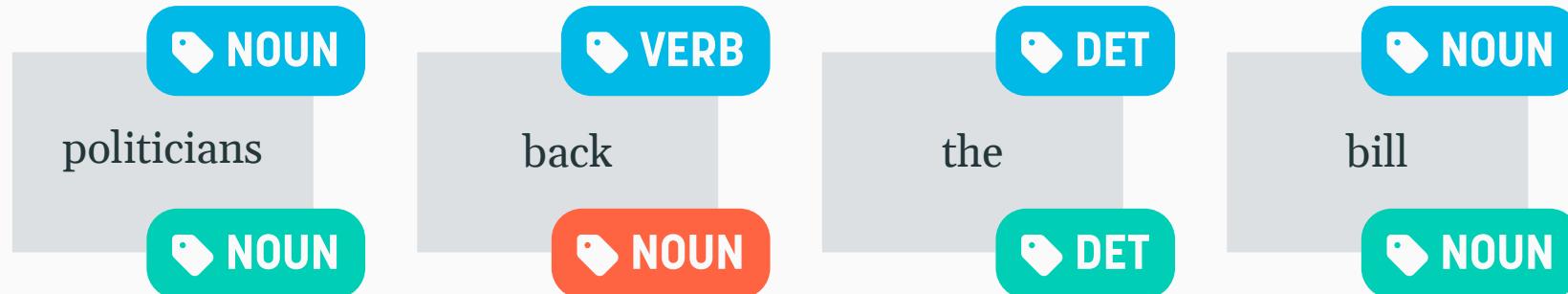
Reminder: Evaluation of text classifiers

- We need a test set with documents and **gold-standard labels**.
 - “gold-standard” = assumed to be correct; e.g. produced or verified manually



Evaluation of POS taggers

- We *still* need a test set with documents and **gold-standard labels**.
 - But now there is one label for each token



- We *still* evaluate our classifier by comparing them against the **predicted labels**.

We can still use confusion matrices!

		predicted				
		DET	ADJ	NOUN	ADP	VERB
true	DET	92	0	0	0	1
	ADJ	2	125	13	1	5
	NOUN	0	7	450	1	8
	ADP	0	0	0	233	1
	VERB	0	5	13	2	345

Important Concepts

- part-of-speech (POS) tagging
- tagsets
- *same as before*: confusion matrix, accuracy, precision, recall, ...

Named Entity Recognition

What are named entities?

- A **named entity** is anything that can be referred to with a “**proper name**”.
- Most commonly used **entity tags**:
 - 1 **PER** – person, e.g. ‘Marie Curie’ or ‘Sir Elton John’
 - 2 **LOC** – location, e.g. ‘Lake Vättern’ or ‘Mount Fuji’
 - 3 **ORG** – organization, e.g. ‘Burger King’ or ‘Linköping University’
 - 4 **GPE** – geo-political entity, e.g. ‘Linköping’ or ‘Commonwealth of Australia’
- As with POS, which entities we distinguish depends entirely on the **tagset**!
 - e.g. spaCy’s models also include **DATE**, **TIME**, **MONEY**, **WORK_OF_ART**, ...

Named entity recognition

Definition

Named entity recognition (NER) is the task of identifying named entities and labelling them with their type.

1 **Finding spans** of text that constitute named entities.

- can be single words ('Sweden') or multi-word phrases ('Republic of Ireland')

2 **Tagging the type** of the entity.

- e.g. person, location, organization, etc.

Example

*Taco Bell **ORG** is an **American** **LOC** - based chain of fast food restaurants founded in **1962** **DATE** by **Glen Bell** **PER** in **Irvine , California** **GPE** .*

What is NER useful for?

Taco Bell **ORG** is an American **LOC** - based chain of fast food restaurants founded in **1962** **DATE** by **Glen Bell** **PER** in **Irvine, California** **GPE**.

- **Sentiment analysis** with respect to a particular company or person
 - e.g. What do consumers think of Taco Bell?
- **Extracting facts** or **answering questions** about entities
 - e.g. When was Taco Bell founded? Who founded it?
- **Linking entities** to knowledge bases that contain structured information
 - e.g. ‘Taco Bell’ can be found in Wikidata as **Q752941**

What makes NER difficult?

1 We need to do **segmentation** in addition to tagging!

- In POS tagging, each word gets one tag.
- In NER, not everything is an entity.

2 Just as in POS tagging, there is **ambiguity**...

- *Washington* **PER** *was born into slavery on the farm of James Burroughs.*
- *Washington* **ORG** *went up 2 games to 1 in the four-game series.*
- *Blair arrived in Washington* **LOC** *for what may well be his last state visit.*
- *In June, Washington* **GPE** *passed a primary seatbelt law.*

What makes NER difficult?

- In some languages (here: Polish), even proper names can get **inflected!**

case	inflected form
nominative	Muammar Kaddafi
genitive	Muammara Kaddafiego
dative	Muammarowi Kaddafiemu
accusative	Muammara Kaddafiego
instrumental	Muammarem Kaddafim
locative	Muamarze Kaddafim
vocative	Muamarze Kaddafi

Source: Piskorski & Yangarber (2012)

But here's the good news...

We can use the **exact same methods** as for POS tagging!

The BIO tagging scheme

Idea

Word-level tags can encode both the **boundaries** and **types** of named entities.

- One way of doing this is the **BIO scheme**, which uses three kinds of tags:
 - **B (beginning)** for tokens that begin a span
 - **I (inside)** for tokens that continue a span
 - **O (outside)** for tokens outside of any span

The BIO tagging scheme

Taco Bell **ORG** is an American **LOC** - based chain of fast food restaurants founded in **1962 DATE** by **Glen Bell PER** in **Irvine, California GPE**.

Taco Bell is an American - based chain of fast food restaurants

B-ORG **I-ORG** 0 0 **B-LOC** 0 0 0 0 0 0 0 0

founded in 1962 by Glen Bell in Irvine , California .

0 0 **B-DATE** 0 **B-PER** **I-PER** 0 **B-GPE** **I-GPE** **I-GPE** 0

Alternative tagging schemes: IO and BIOES

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	O	O	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	O	O
the	O	O	O
Chicago	I-LOC	B-LOC	S-LOC
route	O	O	O
.	O	O	O

Figure 17.7 from [Jurafsky & Martin \(2026\)](#)

Side note: Chinese word segmentation

- The same idea can be used for **any kind of span tagging**.
- Example: **Chinese word segmentation!**

He briefed reporters on the main contents

他向记者介绍了主要内容

他	向	记者	介绍了	主要	内容
S	S	B E	B M E	B E	B E

- Single-character word, Beginning/Middle/End of a word

But how does the **evaluation** work?

Evaluation of named entity recognition

- We want to evaluate NER on the **entire spans**, not individual tags.
 - It doesn't really make sense to speak of e.g. "precision on **I-PER**"...
 - The **0** tag is the most common, but the one we care least about.
- We can **convert tags to tuples** containing:
 - 1 the **start position** of the span (e.g., *index of the token*)
 - 2 the **end position** of the span
 - 3 the **entity type**
- We can then compute **span-level precision, recall, F1-score**.

From tags to spans

1	2	3	4	5	6	7	8	9	10	11
<i>Taco</i>	<i>Bell</i>	<i>was</i>	<i>founded</i>	<i>in</i>	<i>1962</i>	<i>in</i>	<i>Irvine</i>	,	<i>California</i>	.
B-ORG	I-ORG	0	0	0	B-DATE	0	B-GPE	I-GPE	I-GPE	0

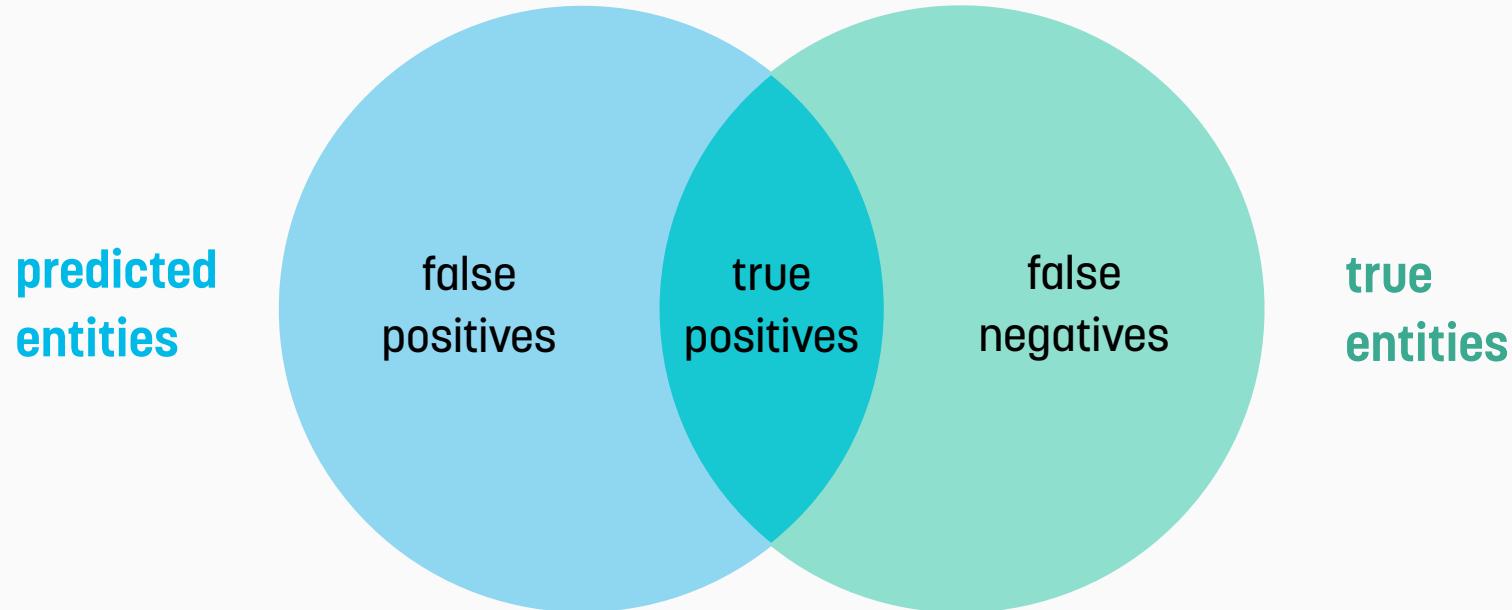
Three entity spans:

1 (1, 2, ORG)

2 (6, 6, DATE)

3 (8, 10, GPE)

Precision and recall, again



$$P = \frac{|\text{true positives}|}{|\text{true positives}| + |\text{false positives}|}$$

$$R = \frac{|\text{true positives}|}{|\text{true positives}| + |\text{false negatives}|}$$

Span-level precision and recall

	1	2	3	4	5	6	7	8	9	10	11
	<i>Taco</i>	<i>Bell</i>	<i>was</i>	<i>founded</i>	<i>in</i>	<i>1962</i>	<i>in</i>	<i>Irvine</i>	,	<i>California</i>	.
true:	B-ORG	I-ORG	0	0	0	B-DATE	0	B-GPE	I-GPE	I-GPE	0
predicted:	B-ORG	I-ORG	0	0	0	B-TIME	0	B-GPE	0	B-LOC	0

Predicted entity spans:

- (1, 2, ORG)
- (6, 6, TIME)
- (8, 8, GPE)
- (10, 10, LOC)

precision = $\frac{1}{4}$, or 25%

True entity spans:

- (1, 2, ORG)
- (6, 6, DATE)
- (8, 10, GPE)

recall = $\frac{1}{3}$, or 33.3...%

Challenges for evaluation

1	2	3	4	5	6	...
<i>First</i>	<i>Bank</i>	<i>of</i>	<i>Chicago</i>	<i>announced</i>	<i>earnings</i>	...
true: B-ORG	I-ORG	I-ORG	I-ORG	0	0	
predicted: 0	B-ORG	I-ORG	I-ORG	0	0	

- There is **some overlap** between the true & predicted entity, but they don't match!
 - In tuple notation: (1, 4, ORG) vs. (2, 4, ORG)
- With our evaluation method, both precision and recall **will be zero**.
 - This example creates both a false negative *and* a false positive!
- More advanced metrics could account for **partial overlap** as well.

Important Concepts

- named entity recognition (NER)
- common named entity types
- BIO tagging scheme
- span-level precision & recall