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What is bias in NLP models?

The systematic tendency in a model to favor one demographic group/individual over
another, which can be mitigated but may well lead to unfairness - r. Ribén Fletcher et al.
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Example of gender bias in language translation (NLP)
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Selection of dataset: Jigsaw Comment toxicity classification

Data columns (total 45 columns):
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comment_text
severe_toxicity
obscene
identity attack
insult

threat

asian

atheist

text: haha you guys are a bunch of losers.

target: 0.8936170212765957

Is it an insult? 0.8723404255319149

Is it a thread? 0.0

Is it attacking to any identity? 0.0212765957446808

df[ "toxic_label'] = (df['target’'] >= 0.1).astype(int)




Toxic - Non-toxic — balancing our dataset
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How do we measure bias?



Word Embedding Association Test (WEAT)
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Sentence Embedding Association Test (SEAT)

["He is a leader”, ...] ["She is a doctor, ..."]

Gender bias: b(vc) = |_1|\;ZGMS(IC, lm) — L s(v , L )

"This job requires intelligence."



Model selection



Model selection

- Pre-trained BERT base model [1]

-  Transformer model

- Pre-trained on large corpus of english data

- Fine-tune base model on Jigsaw dataset

- Classification task: toxicity detection

[1]: https://huggingface.co/google-bert/bert-base-uncased



https://huggingface.co/google-bert/bert-base-uncased

Mitigation strategies



Mitigation strategies for bias

- Pre-processing algorithms

Data augmentation

- In-processing algorithms

- Post-processing algorithms



Data augmentation

- ldea: remove bias from training data
- Create augmented dataset biased towards underrepresented group

- Train on union of original and augmented data

- Examples with gender swapping:

“He went to the university.” —> “She went to the university.”

“The woman likes cooking.” — “The man likes cooking.”



Results



Results after gender swapping

Categories: - negative: negatively associated adjectives
- positive: positively associated adjectives
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WEAT Score

Results after Political swapping
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Conclusion/Discussion

- Training machine learning models can bring unwanted and unnoticed bias

- Bias mitigation improved fairness metrics in our work

- Can we claim now that the model is unbiased?

Thank you!

Any questions?



