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Introduction



Introduction to the project

* Aproject about finetuning CLIP on a specific domain
* Finetuning on medical images (specializing in the domain)

* |mage-text pairs



Reason for finetuning on medical images

Medical imaging papers focusing on CLIP
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Fig. 2. Rapid increase of the number of medical imaging papers focusing on
CLIP. Refined pre-training and CLIP-driven application are the two main
taxonomy categories introduced in this survey.

Picture from "CLIP in medical imaging: A
comprehensive survey" (Zhao et al., 2024)

CLIP has gained a lot of interest in the
medical imaging domain in recent years



CLIP (Contrastive Language-Image Pre-
Training)

* Learnsthe relation between embedded images and text

o Uses separate encoders for text and images to transform input into

numerical vector representations (embeddings)

* Pretrained on a dataset with 400M image-text pairs (Radford et

al., 2021)



Zero-shot learning
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

Picture from "Learning Transferable Visual Models From
Natural Language Supervision" (Radford et al., 2021)

CLIP is known for its zero-shot
learning abilities

o Classify images in categories it was

never explicitly trained on.



Main question for the project

Can we get useful finetuning and increase the accuracy of CLIP in a
specific domain with just image and text data?



Method



Fine-tuning Pipeline
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PubMedVision dataset

(Chen et al., 2024)
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Image

Text

"The provided medical image is a sagittal MRI scan
of the brain, showing a prominent lesion that is
hyperintense on this T1-weighted image. The lesion
is located extracranially but impinges upon the
cerebral tissue, specifically around the right
sphenoid ridge. It exhibits characteristics suggestive
of a significant calcification, as indicated by its
brightness. This lesion also demonstrates ...”

Label

Brain
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Pre-training
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Pre-training
l Contrastive loss
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Pre-training
l Contrastive loss

”Fine-tune like you pre-train” (Goyal et al., 2023)
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Contrastive Loss

* Maximize similarity between GT pairs, while minimizing to the rest
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Image from: https://github.com/openai/CLIP
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Contrastive Loss
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Contrastive Loss

 total loss = (image to text loss + text to image loss) / 2
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Contrastive Loss

- total loss = (image_to_text loss + text to image loss) / 2
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Pre-training
l Contrastive loss

”Fine-tune like you pre-train” (Goyal et al., 2023)
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Results & Analysis



Model Top-1 (%) Top-3 (%)

Pre-trained 49.4 78.9
Fine-tuned (captions) 64.3 83.1
Fine-tuned (labels) 76.9 92.1

Accuracy scores
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