

Self-Supervised CLIP Fine-Tuning with Medical Image-Text Data

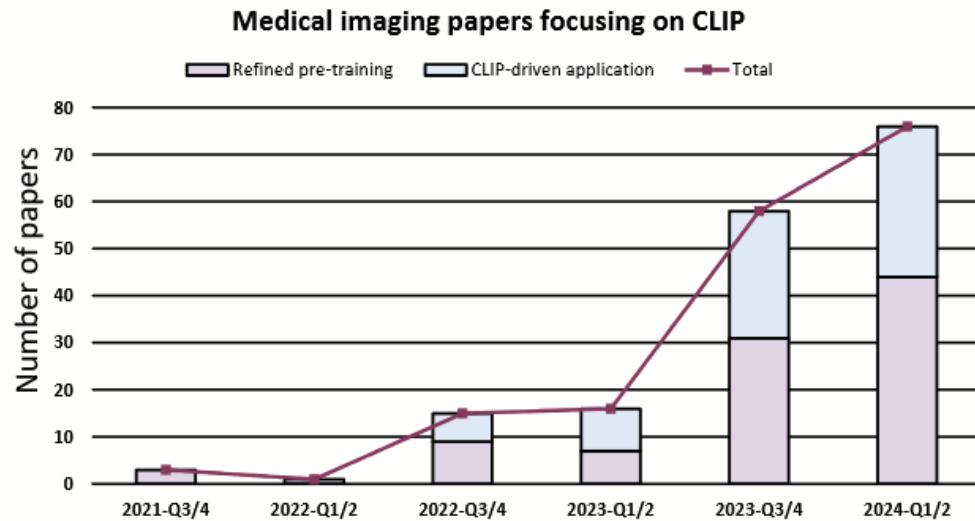
Gabriel Bülow, Abbas Alubeid, Karl Duckert Karlsson,
Gor Duryaryan, Johan von Axelson, Lukas Ingemarsson

Introduction

Introduction to the project

- A project about finetuning CLIP on a specific domain
- Finetuning on medical images (specializing in the domain)
- Image-text pairs

Reason for finetuning on medical images



CLIP has gained a lot of interest in the medical imaging domain in recent years

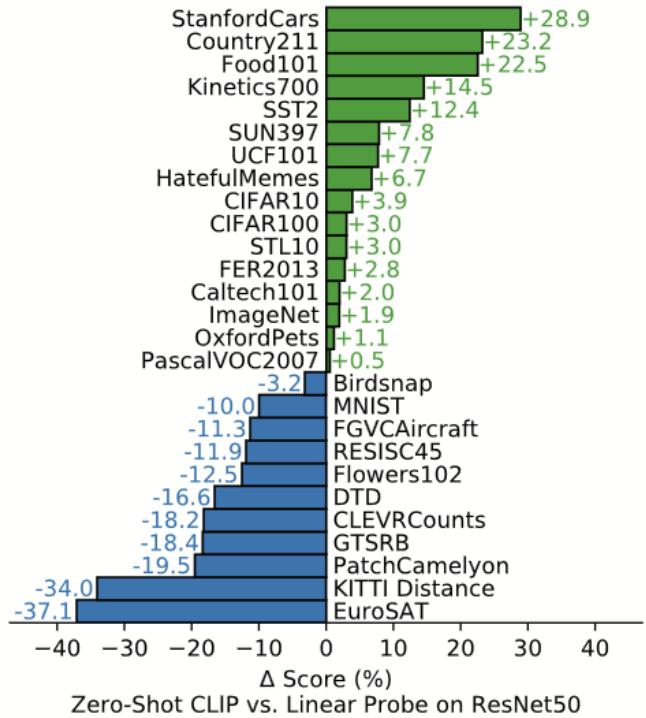
Fig. 2. Rapid increase of the number of medical imaging papers focusing on CLIP. Refined pre-training and CLIP-driven application are the two main taxonomy categories introduced in this survey.

Picture from "CLIP in medical imaging: A comprehensive survey" (Zhao et al., 2024)

CLIP (Contrastive Language-Image Pre-Training)

- Learns the relation between embedded images and text
 - Uses separate encoders for text and images to transform input into numerical vector representations (embeddings)
- Pretrained on a dataset with 400M image-text pairs (Radford et al., 2021)

Zero-shot learning



- CLIP is known for its zero-shot learning abilities
 - Classify images in categories it was never explicitly trained on.

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

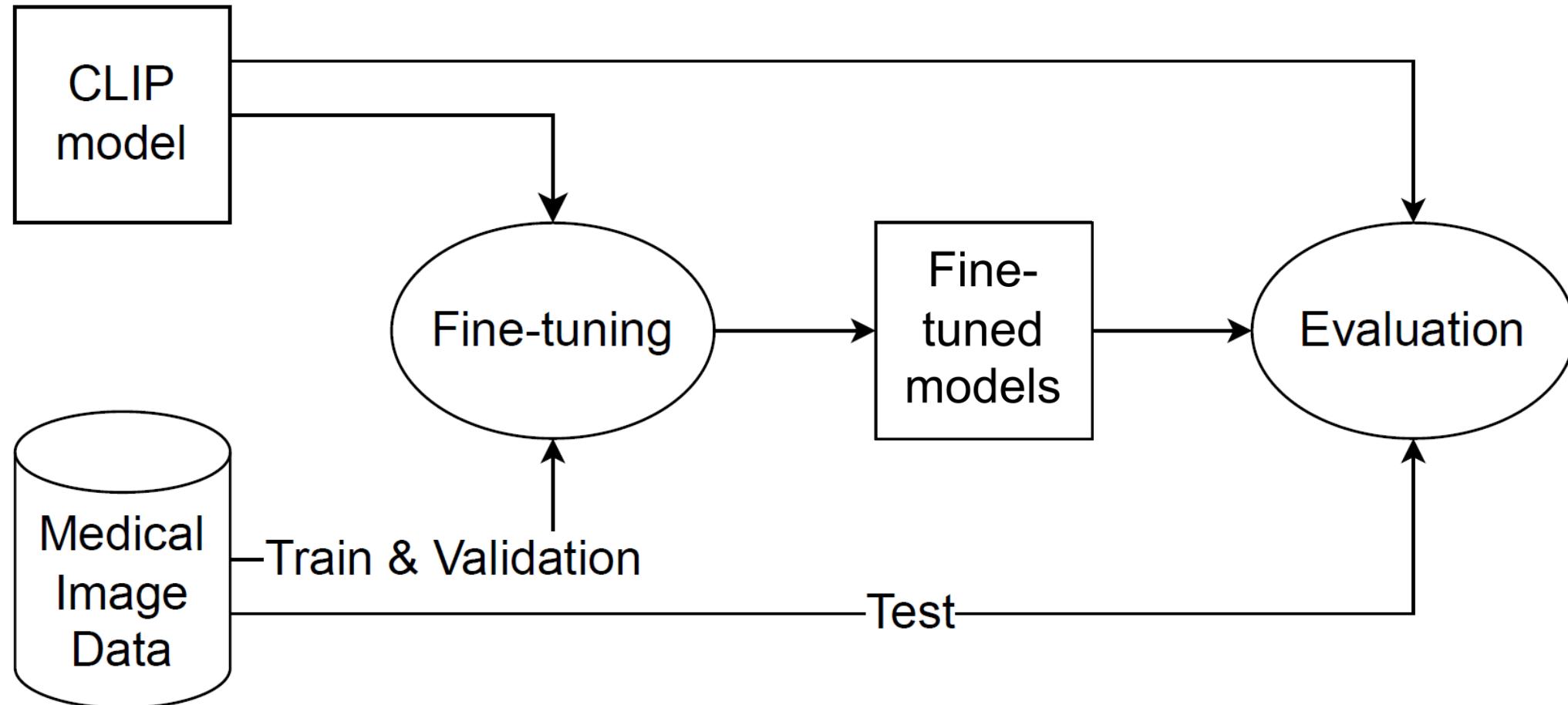
Picture from "Learning Transferable Visual Models From Natural Language Supervision" (Radford et al., 2021)

Main question for the project

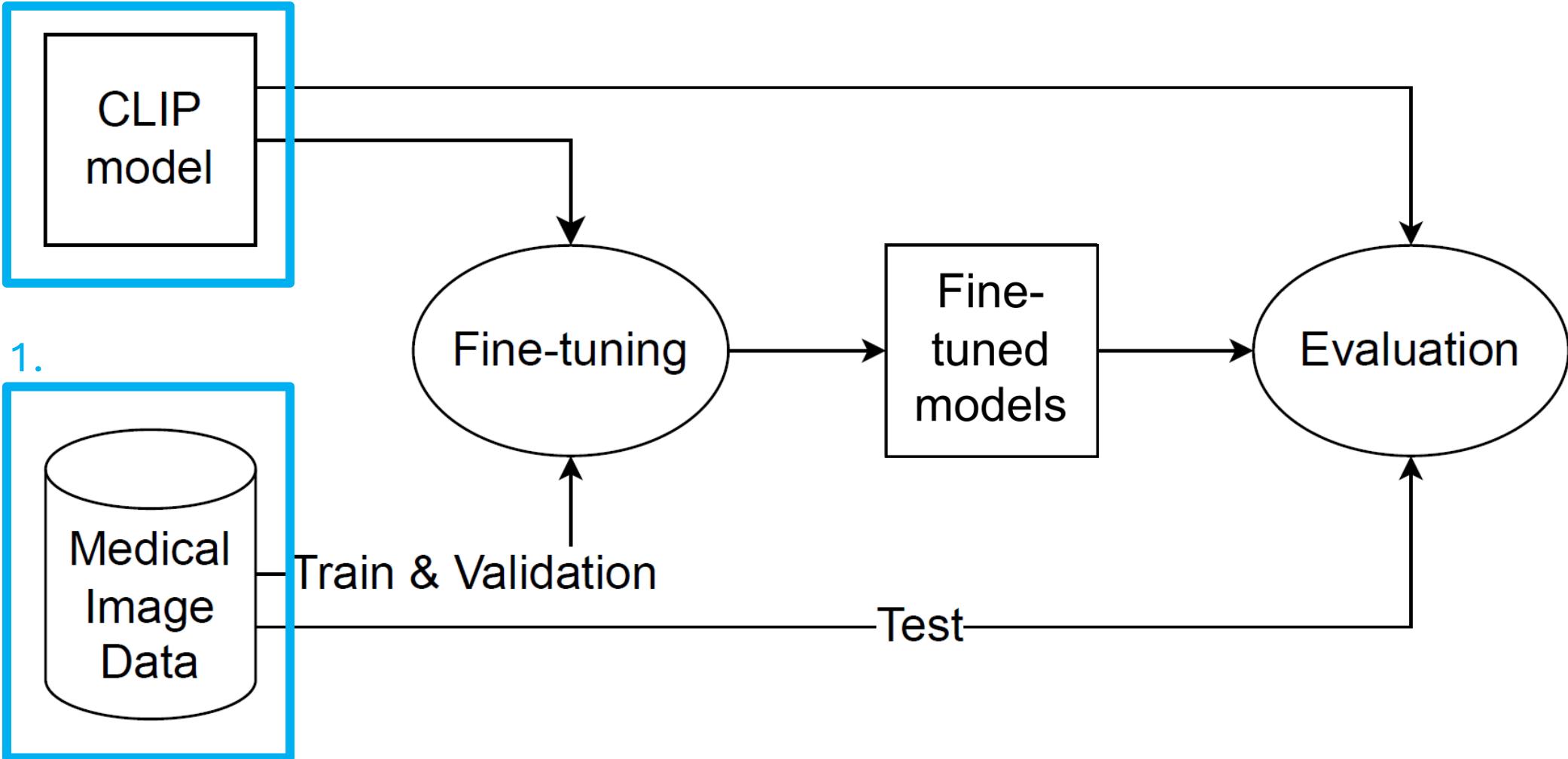
Can we get useful finetuning and increase the accuracy of CLIP in a specific domain with just image and text data?

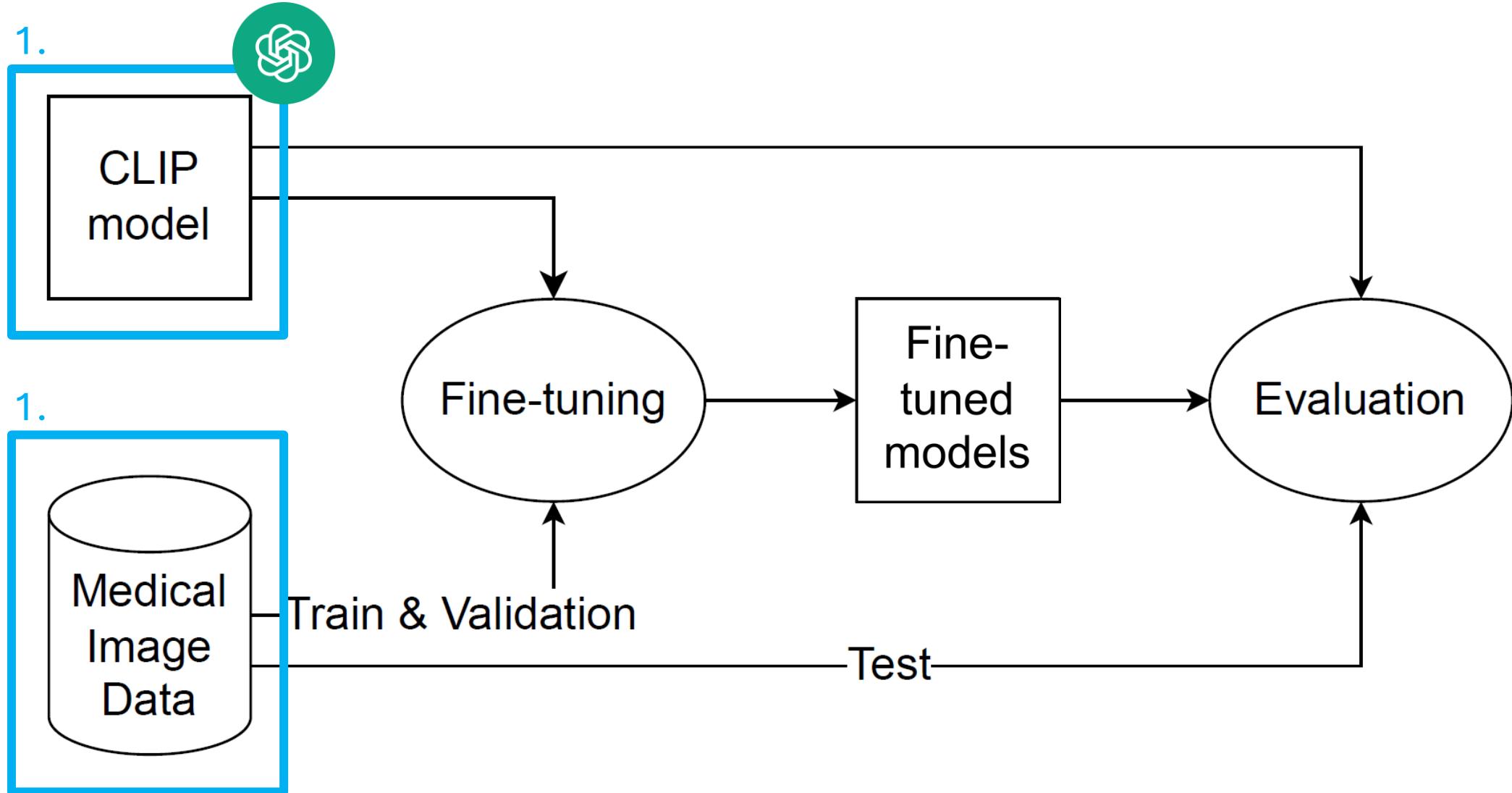
Method

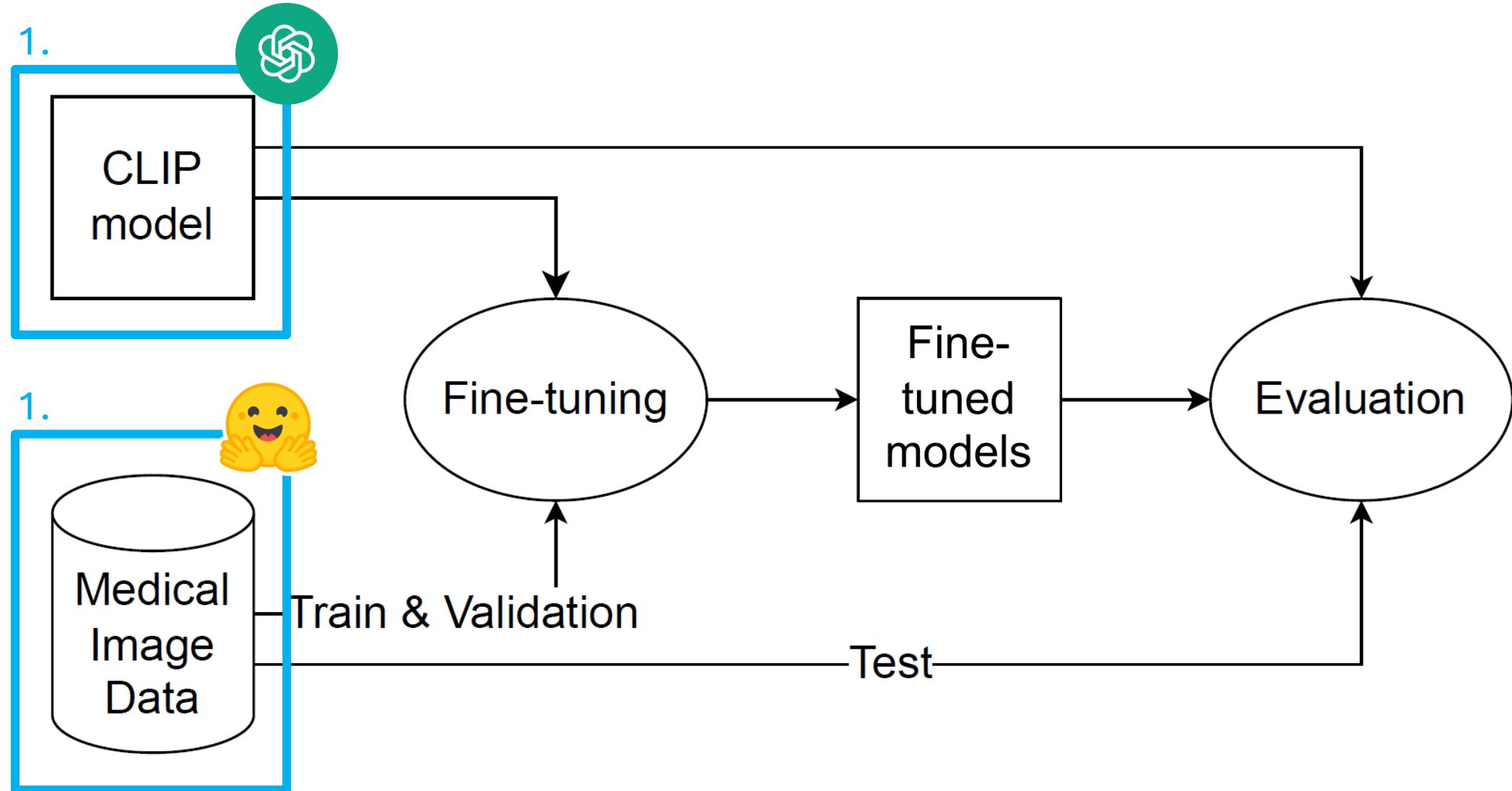
Fine-tuning Pipeline



1.

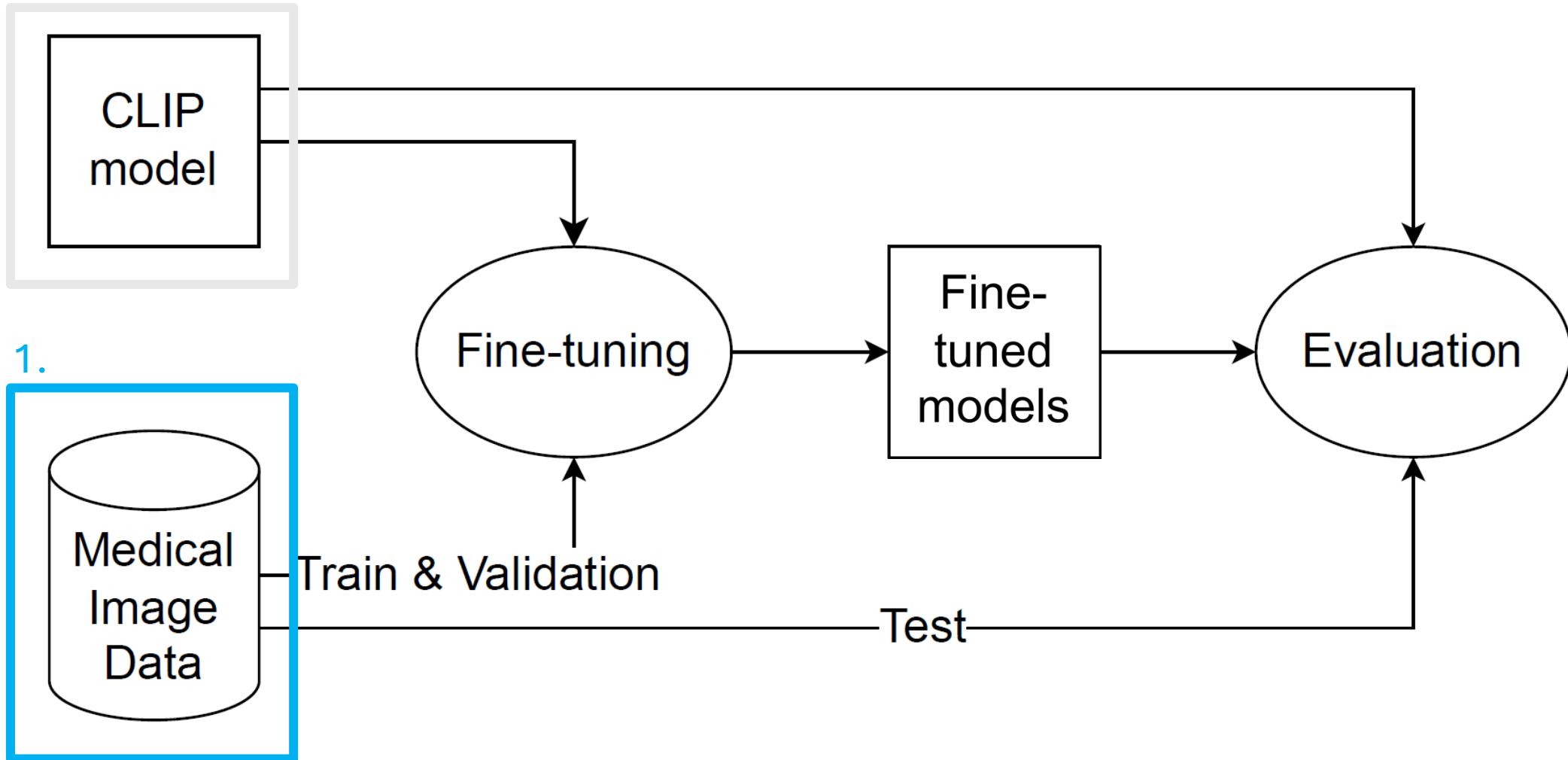






PubMedVision dataset
(Chen et al., 2024)

1.



Image



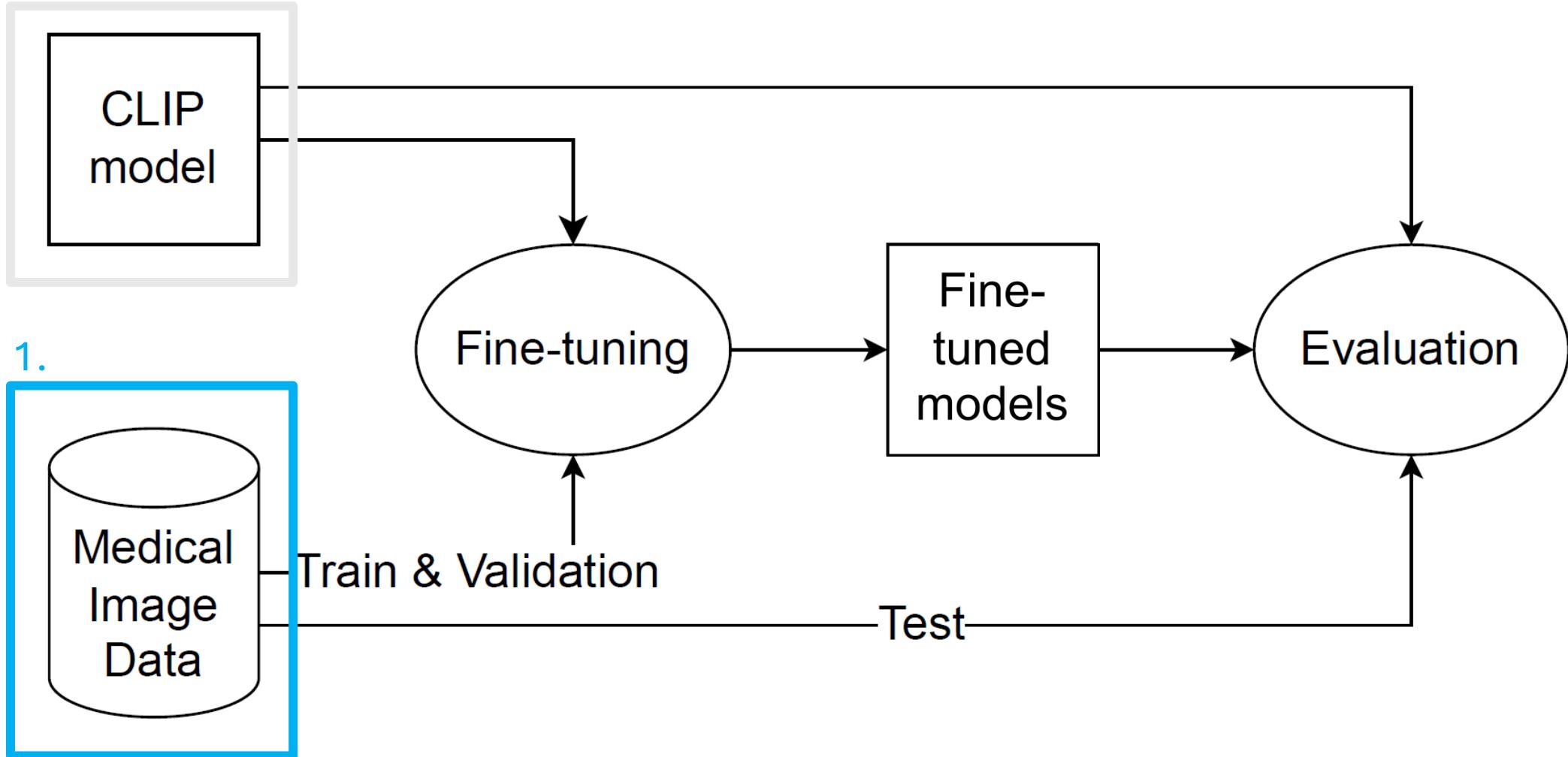
Text

"The provided medical image is a sagittal MRI scan of the brain, showing a prominent lesion that is hyperintense on this T1-weighted image. The lesion is located extracranially but impinges upon the cerebral tissue, specifically around the right sphenoid ridge. It exhibits characteristics suggestive of a significant calcification, as indicated by its brightness. This lesion also demonstrates ..."

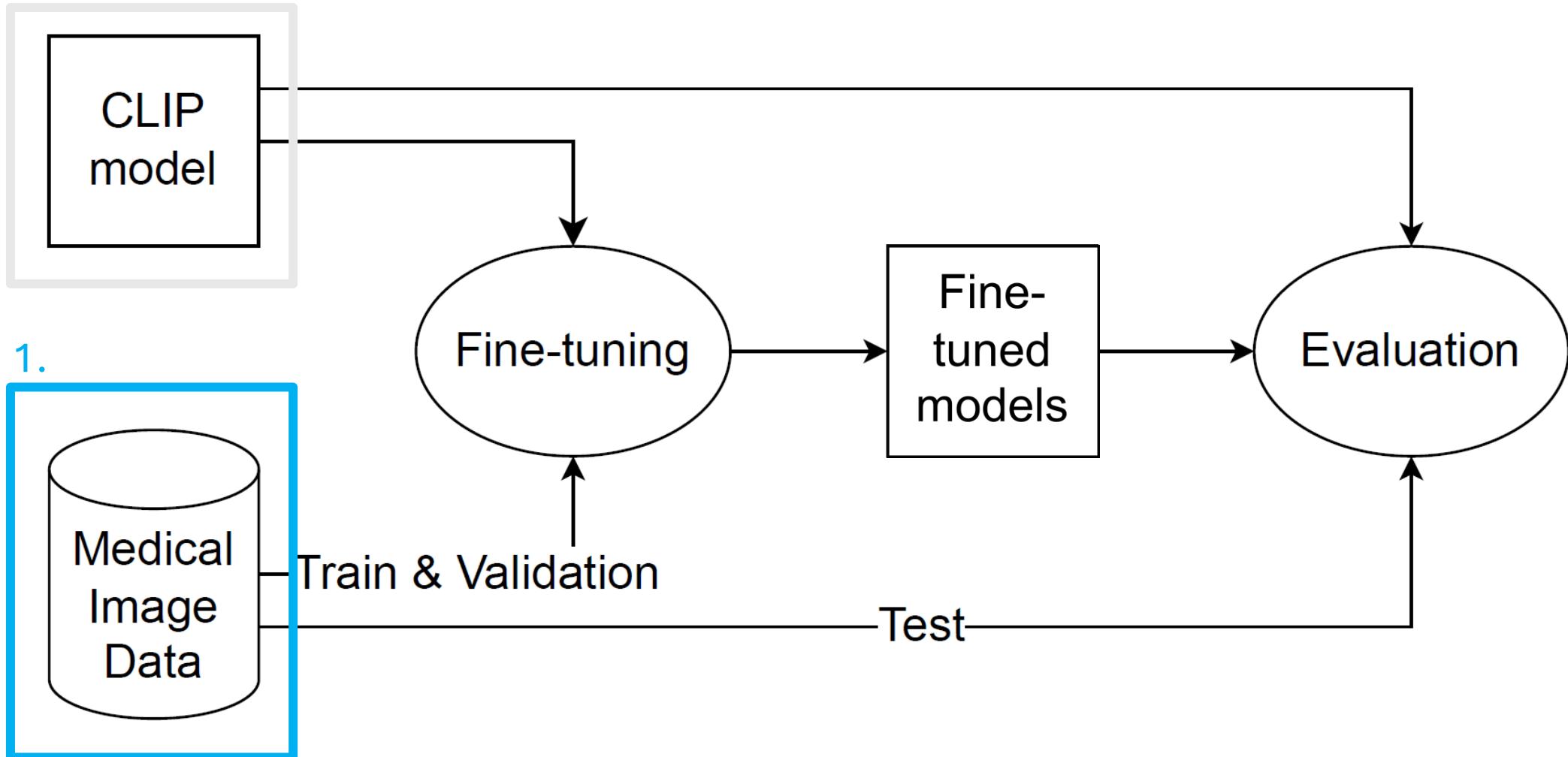
Label

Brain

1.

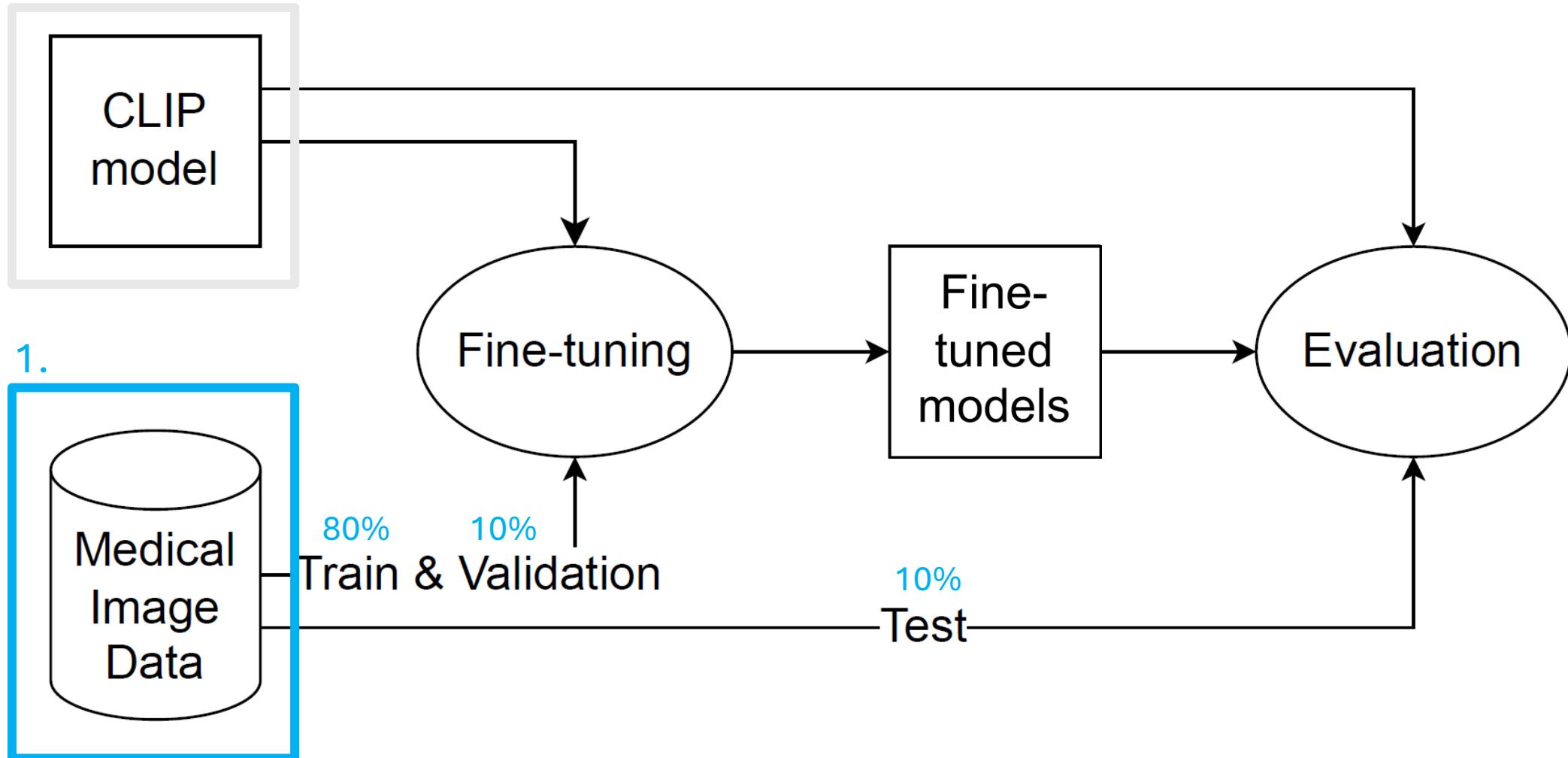


1.



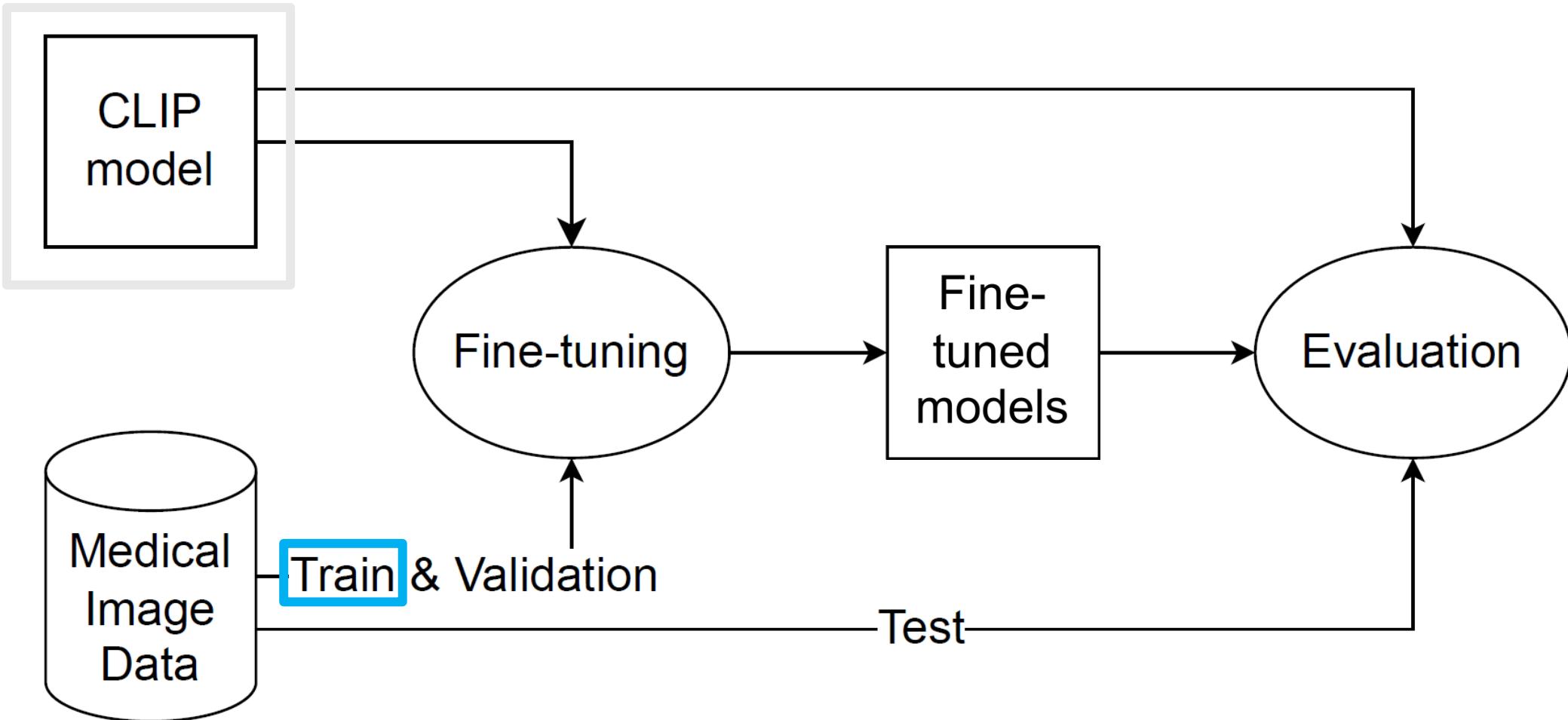
Sampled 4,096 of
~533k entries

1.



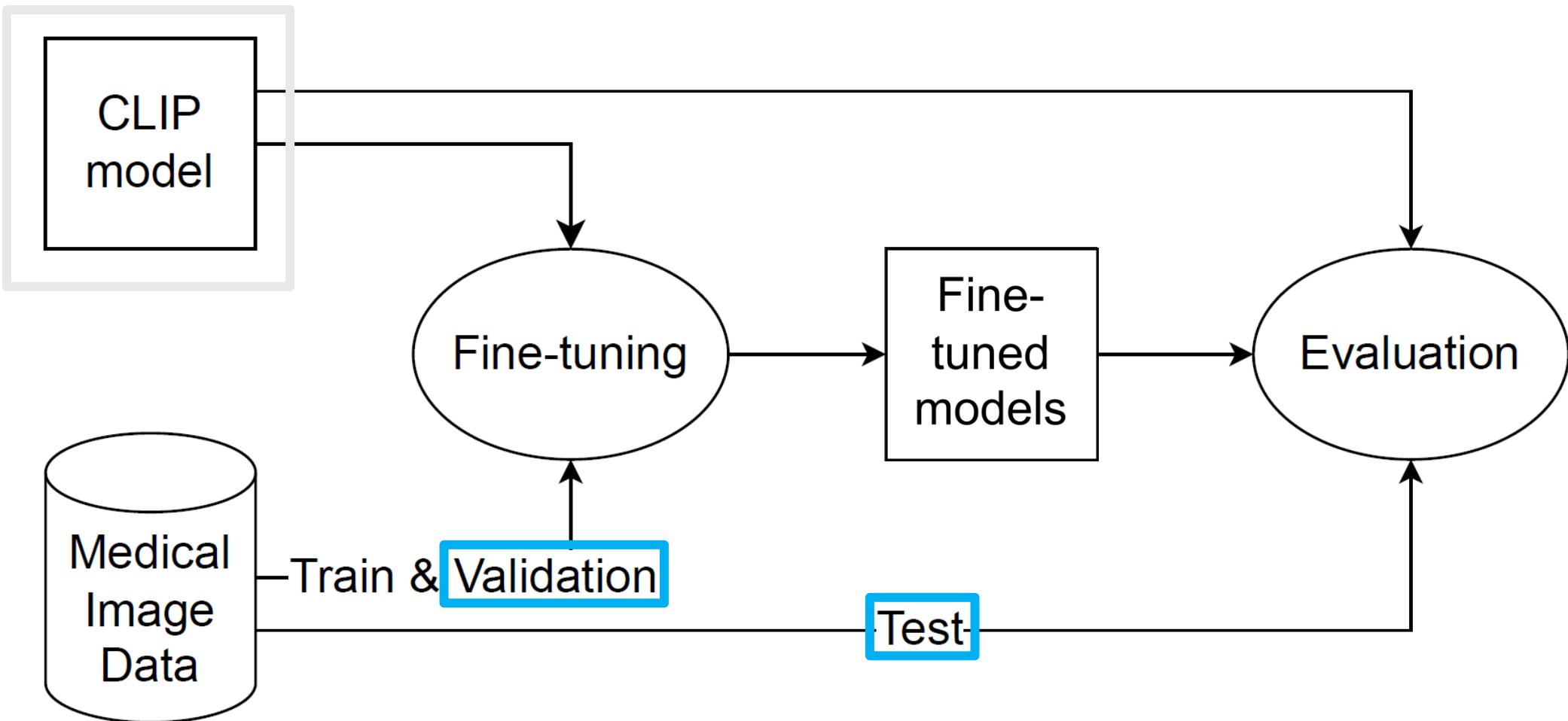
Sampled **4,096** of
~533k entries

1.



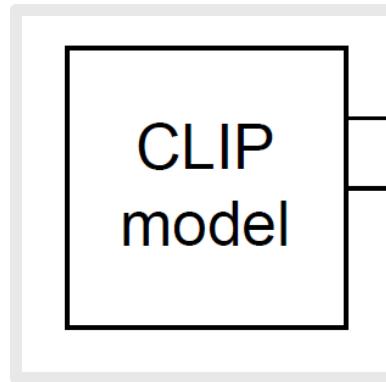
Sampled 4,096 of
~533k entries

1.

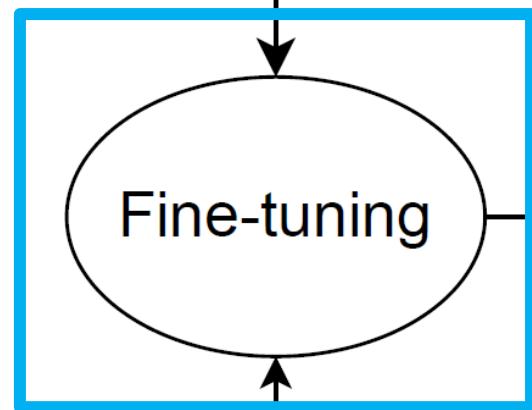


Sampled 4,096 of
~533k entries

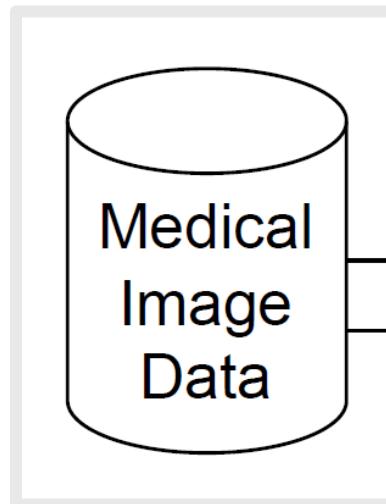
1.



2.

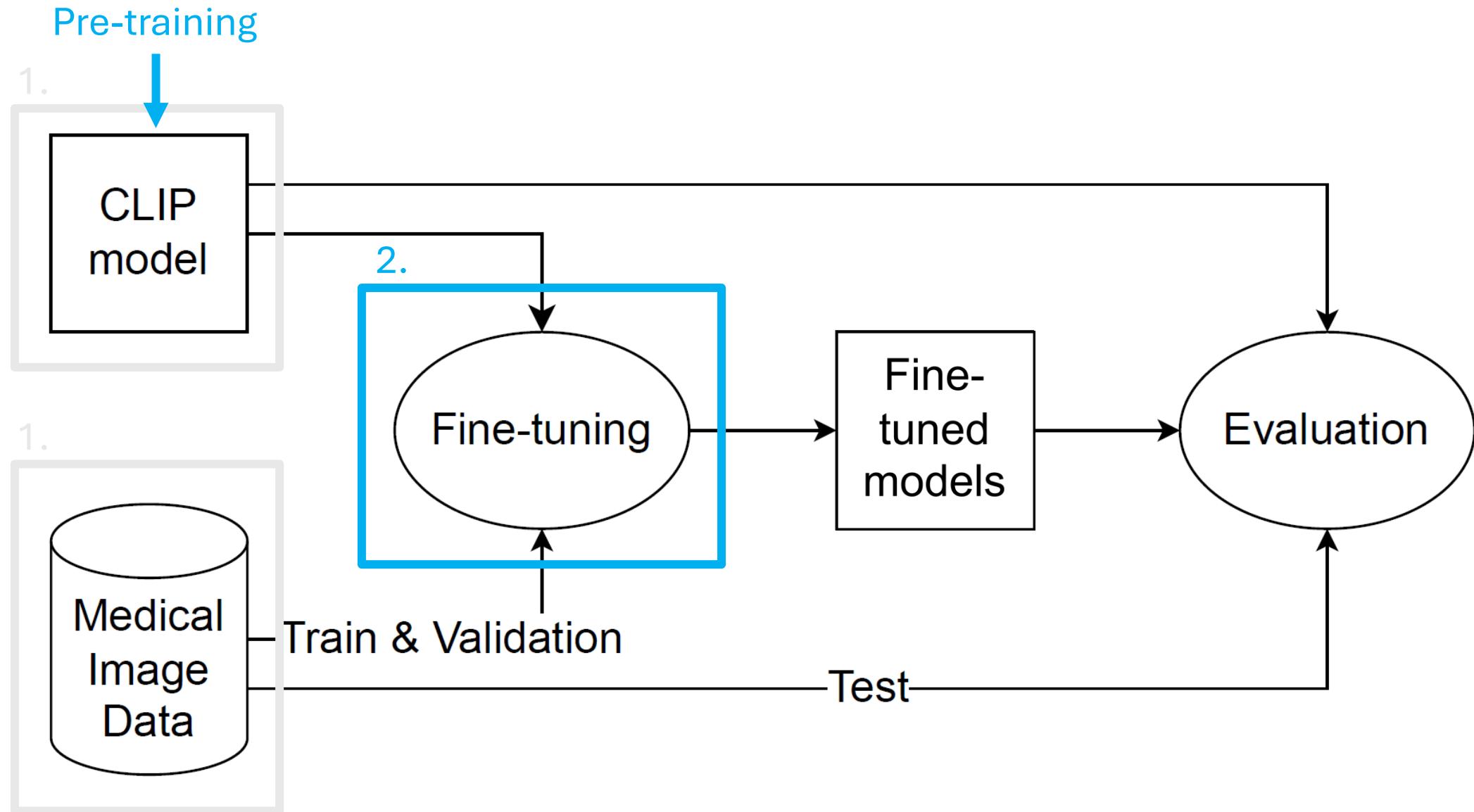


1.



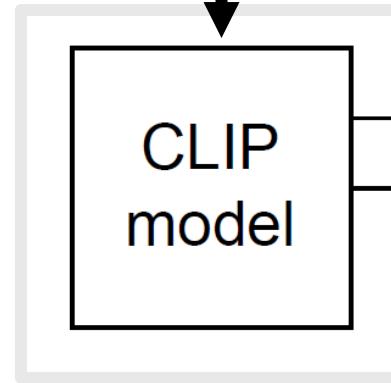
Train & Validation

Test

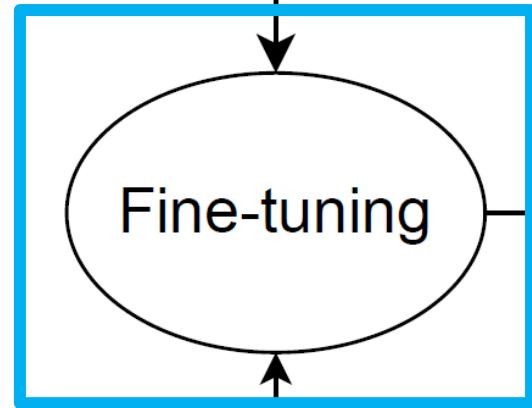
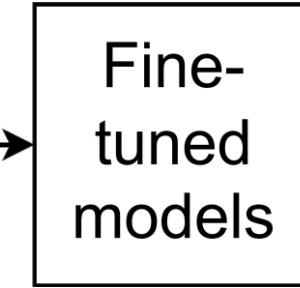
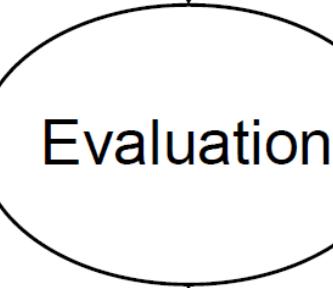


Pre-training

1. *Contrastive loss*



- 2.



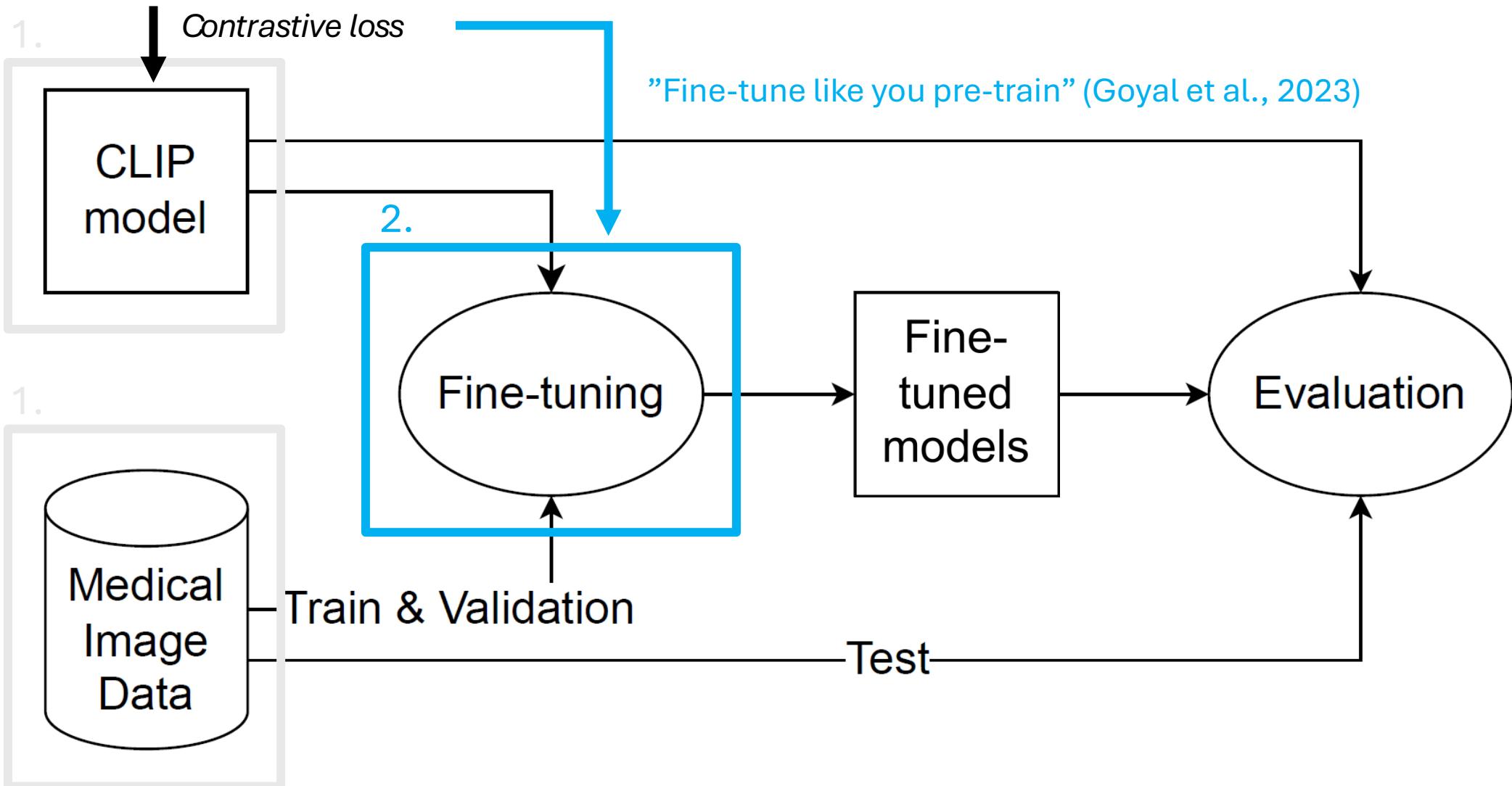
- 1.



Train & Validation

Test

Pre-training



Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

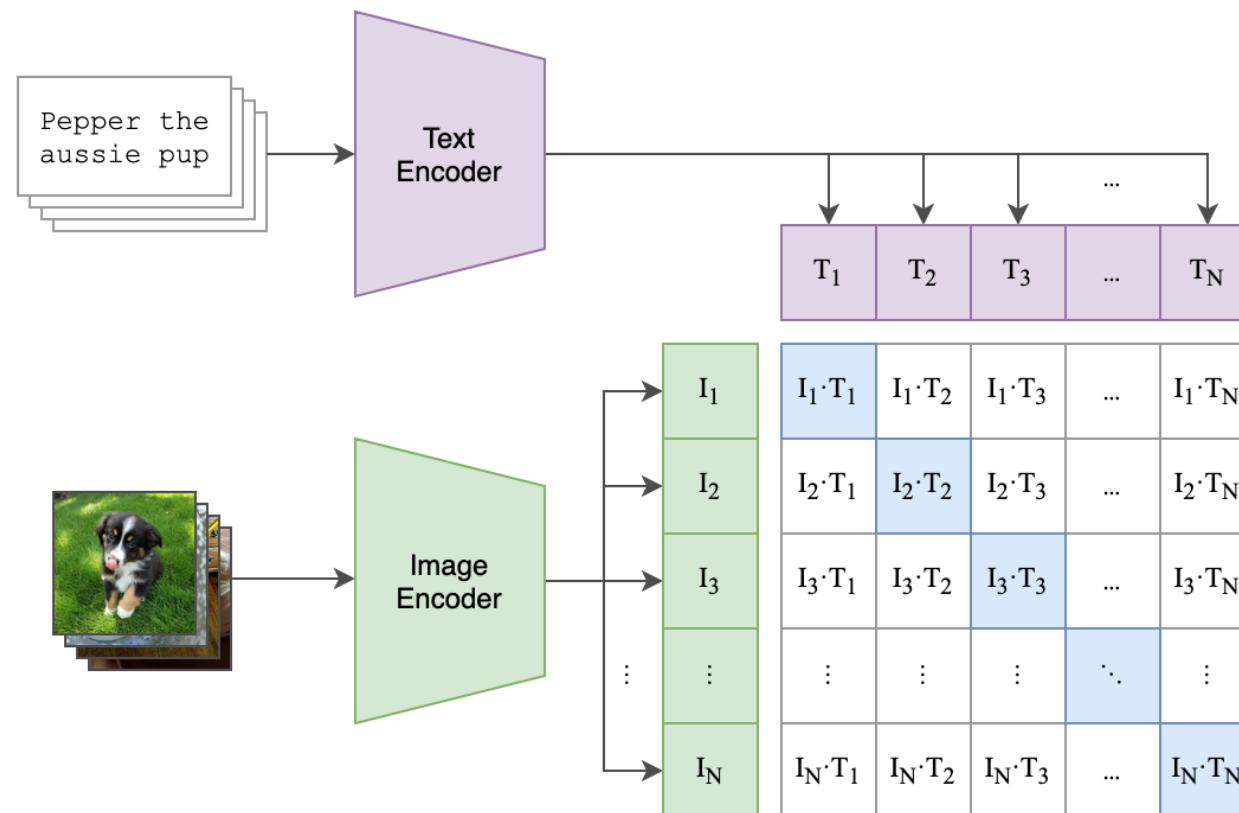


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

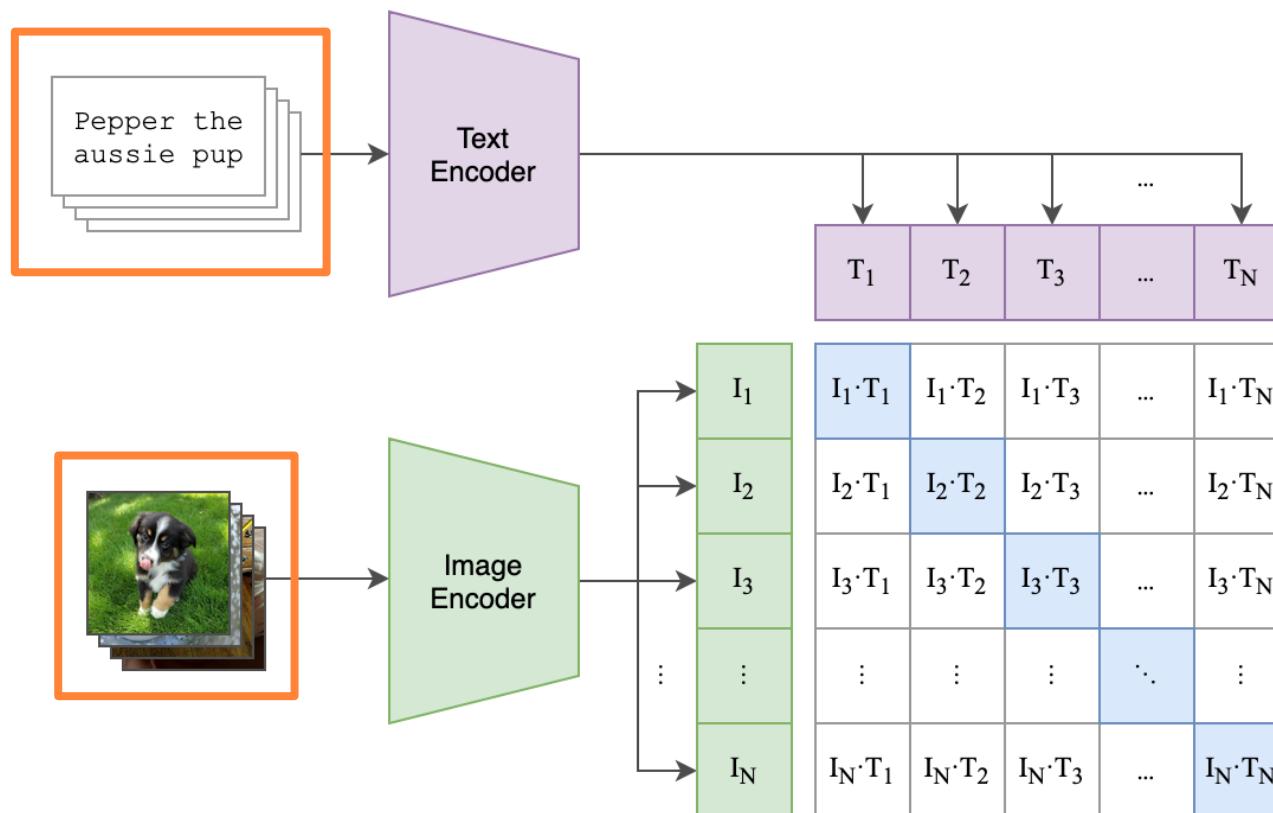


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

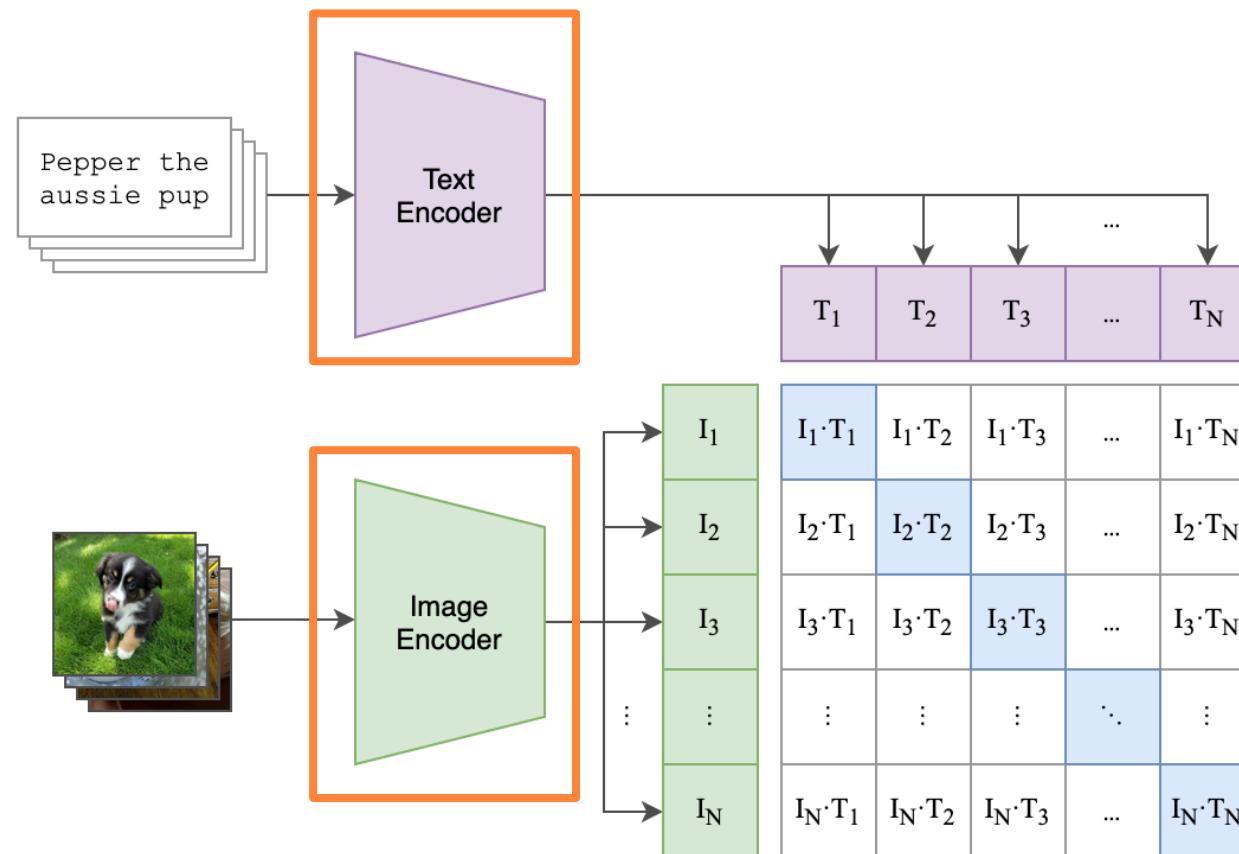


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

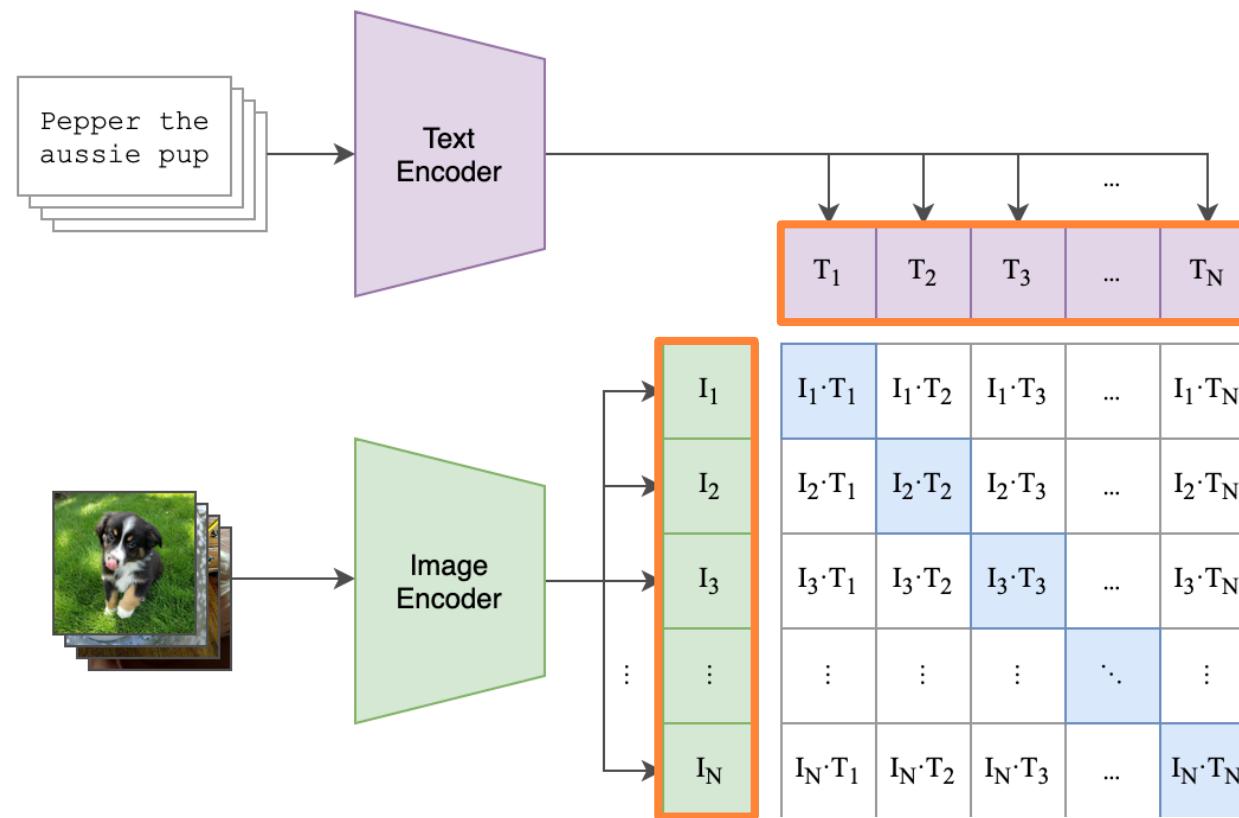


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

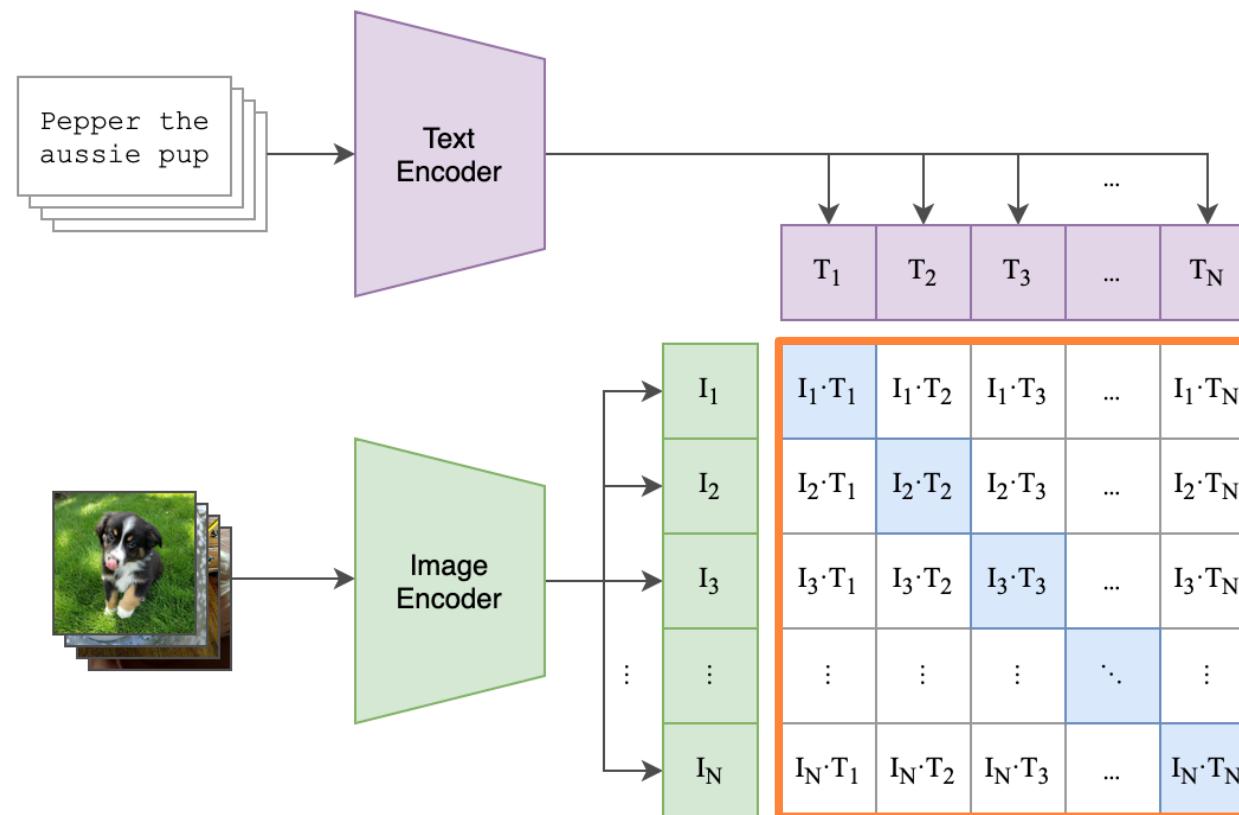


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

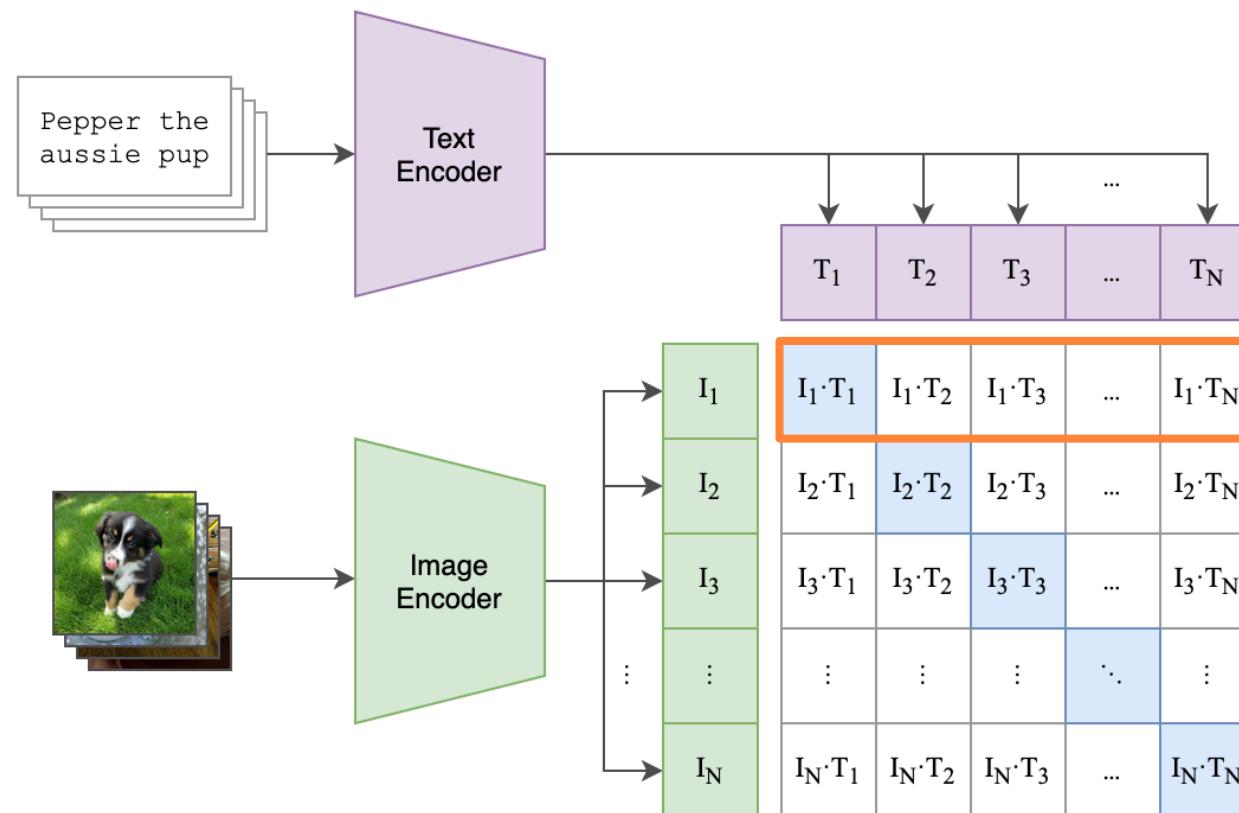


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

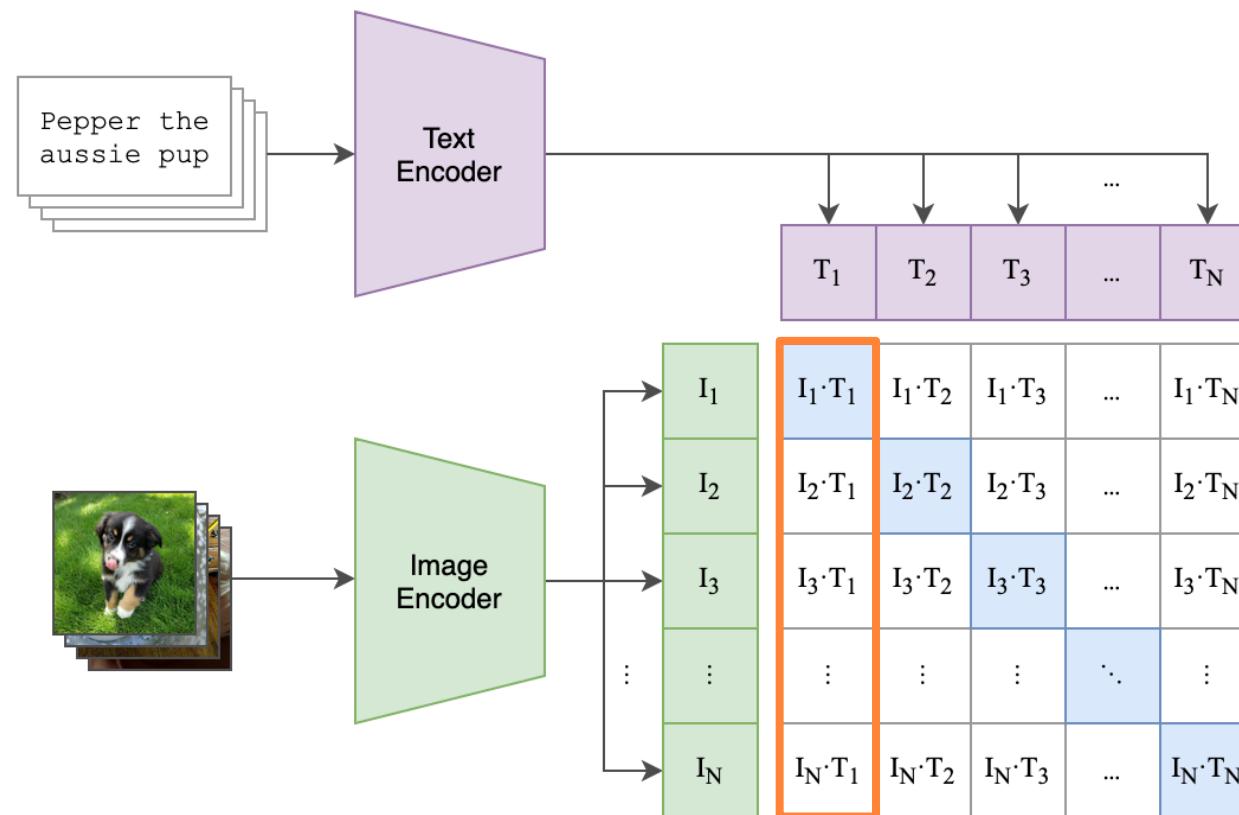


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- Maximize similarity between GT pairs, while minimizing to the rest

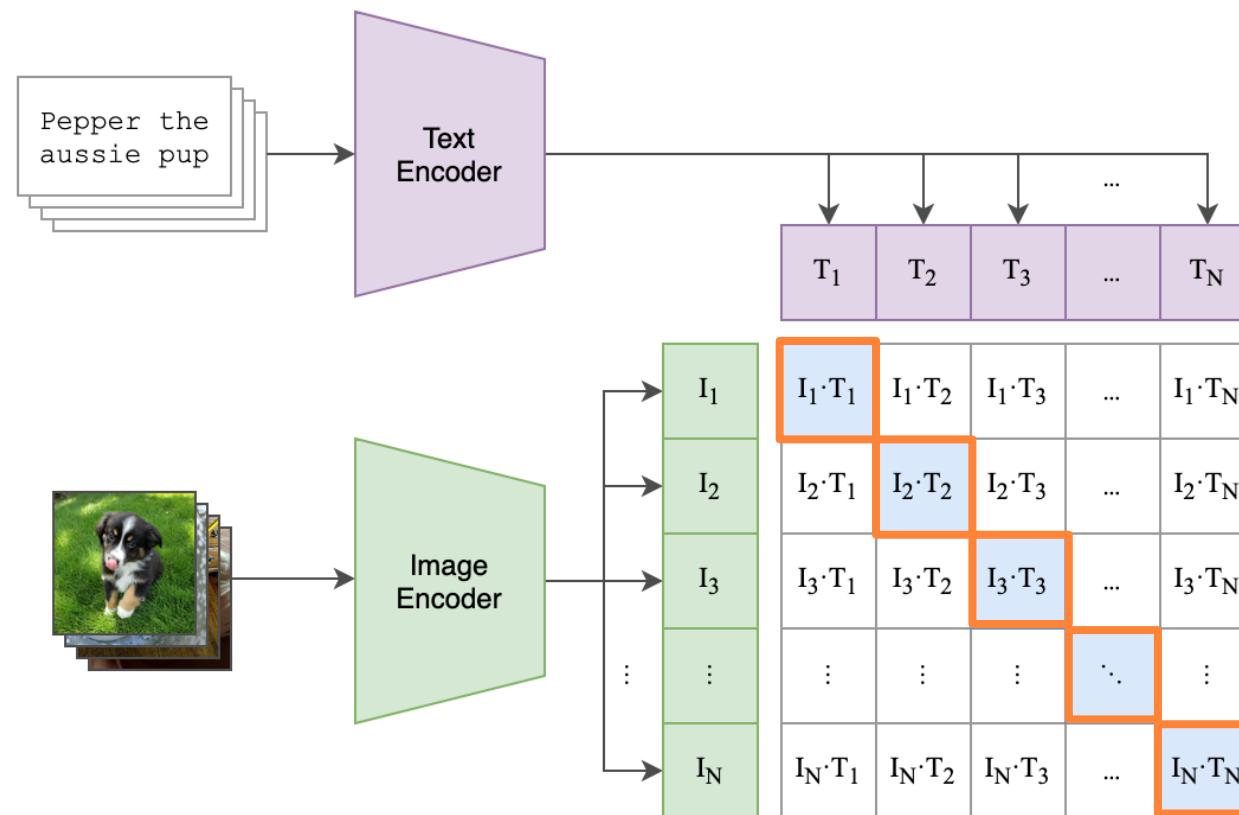


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

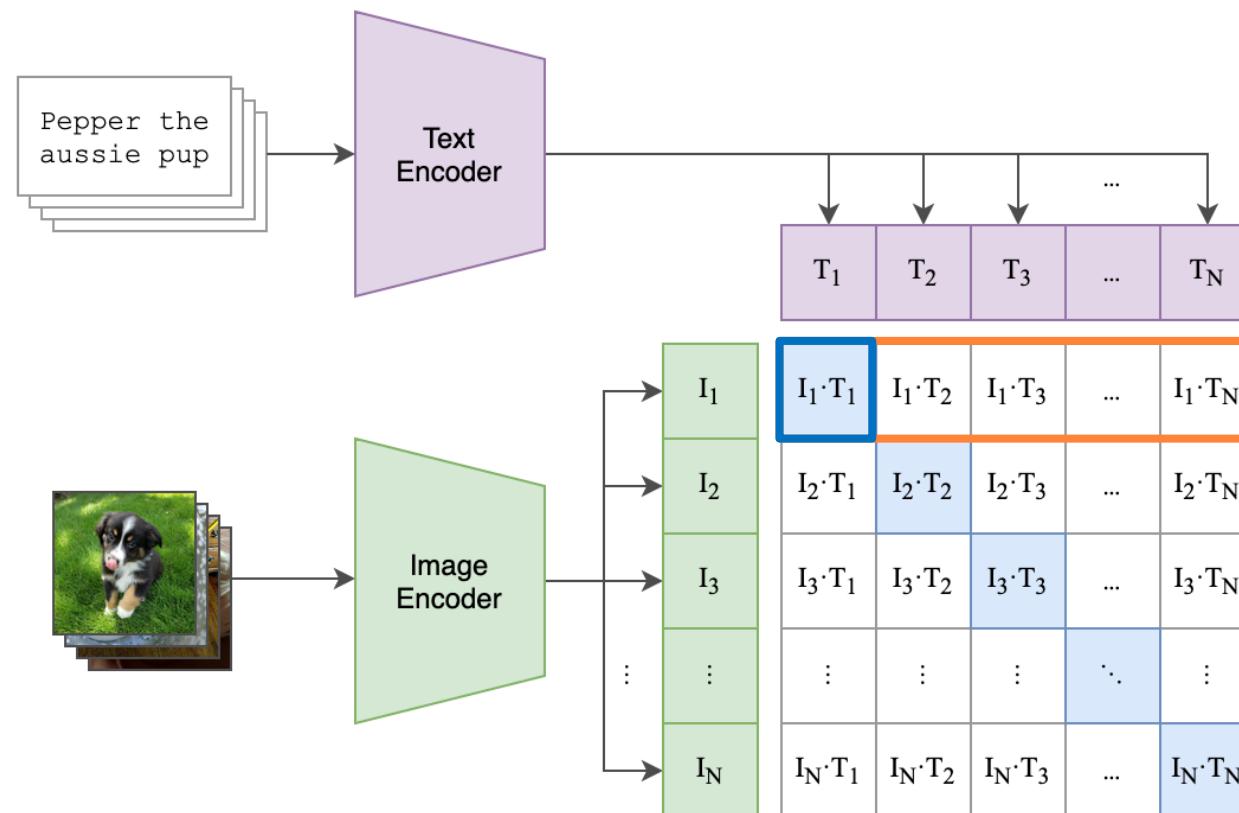


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

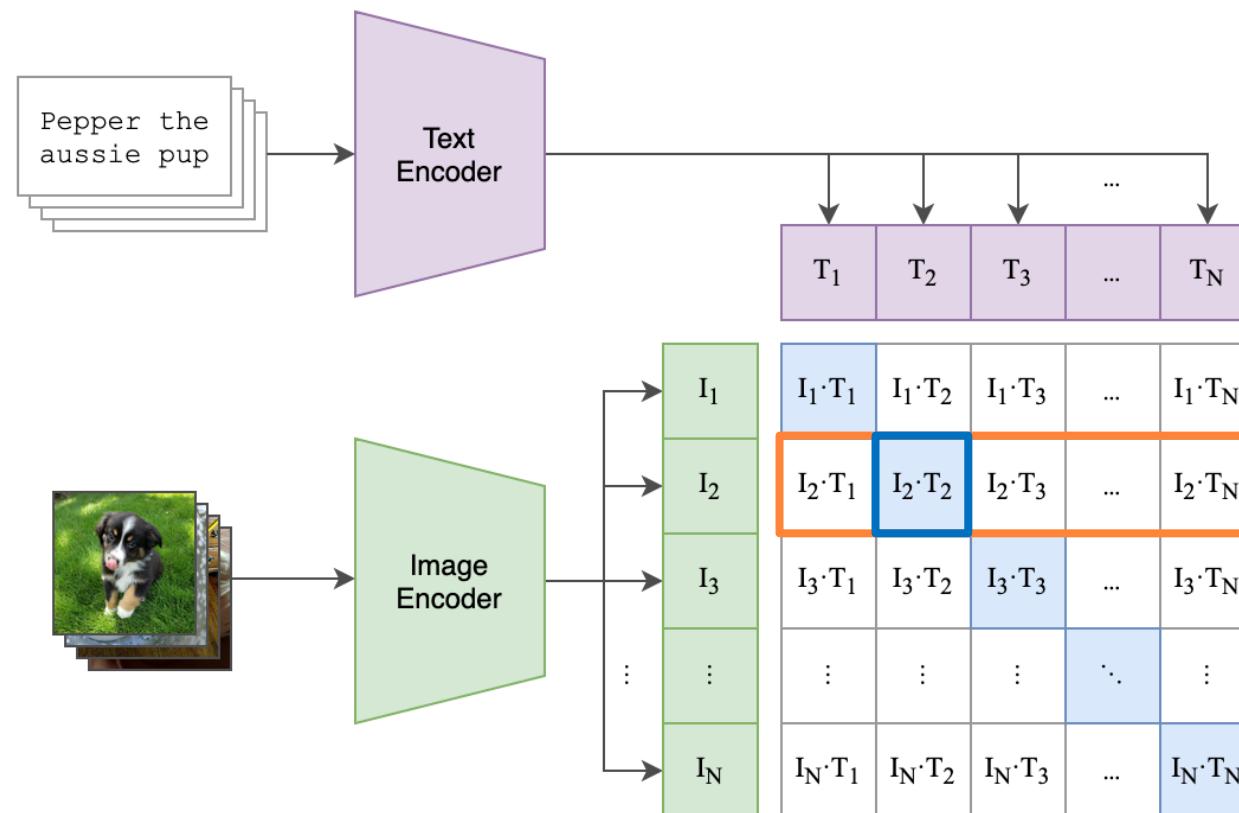


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

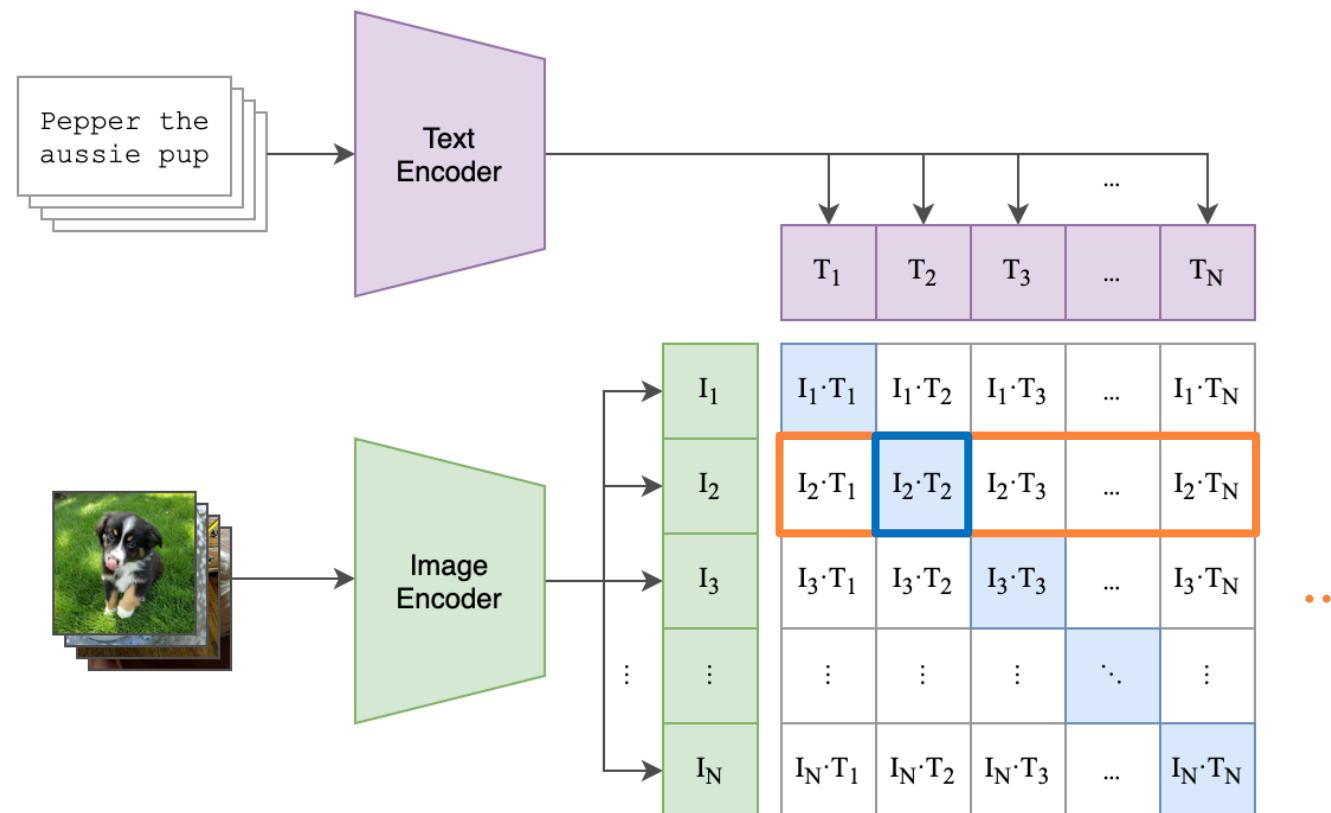


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

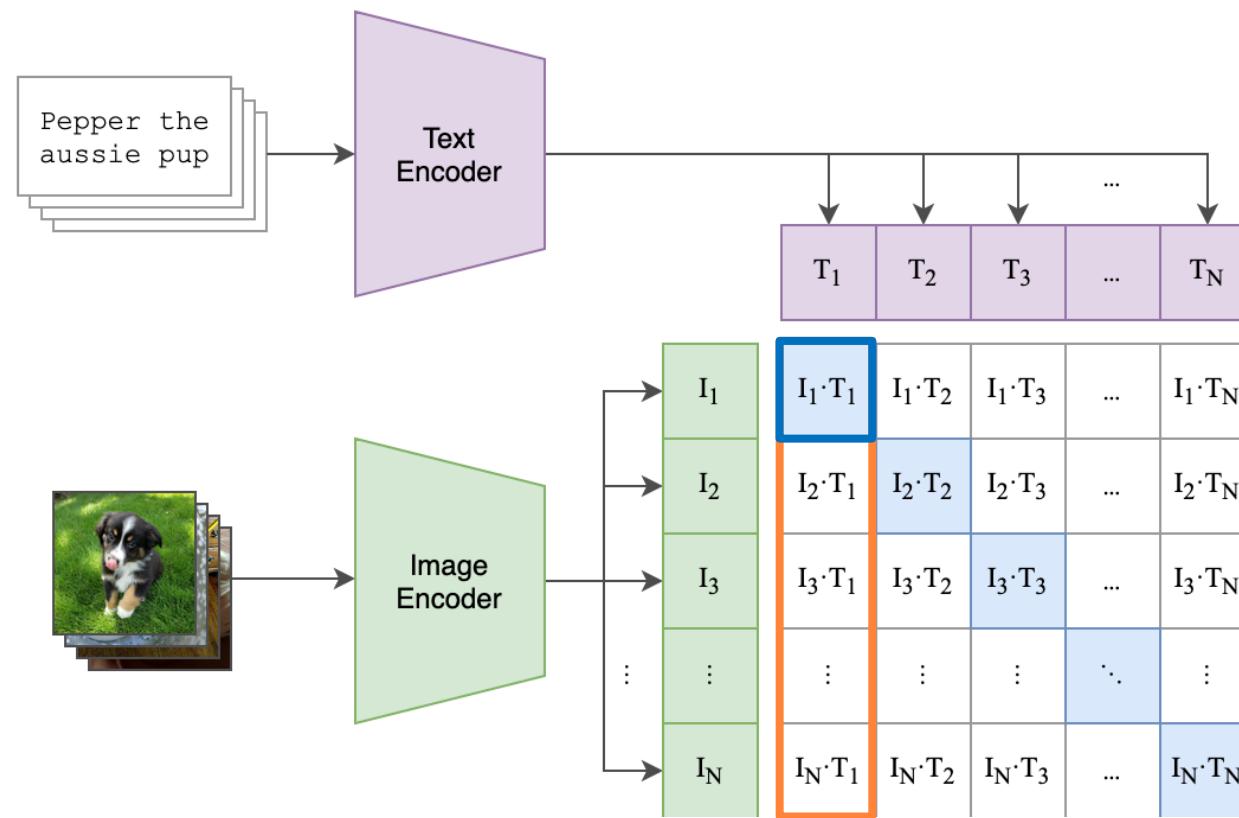


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

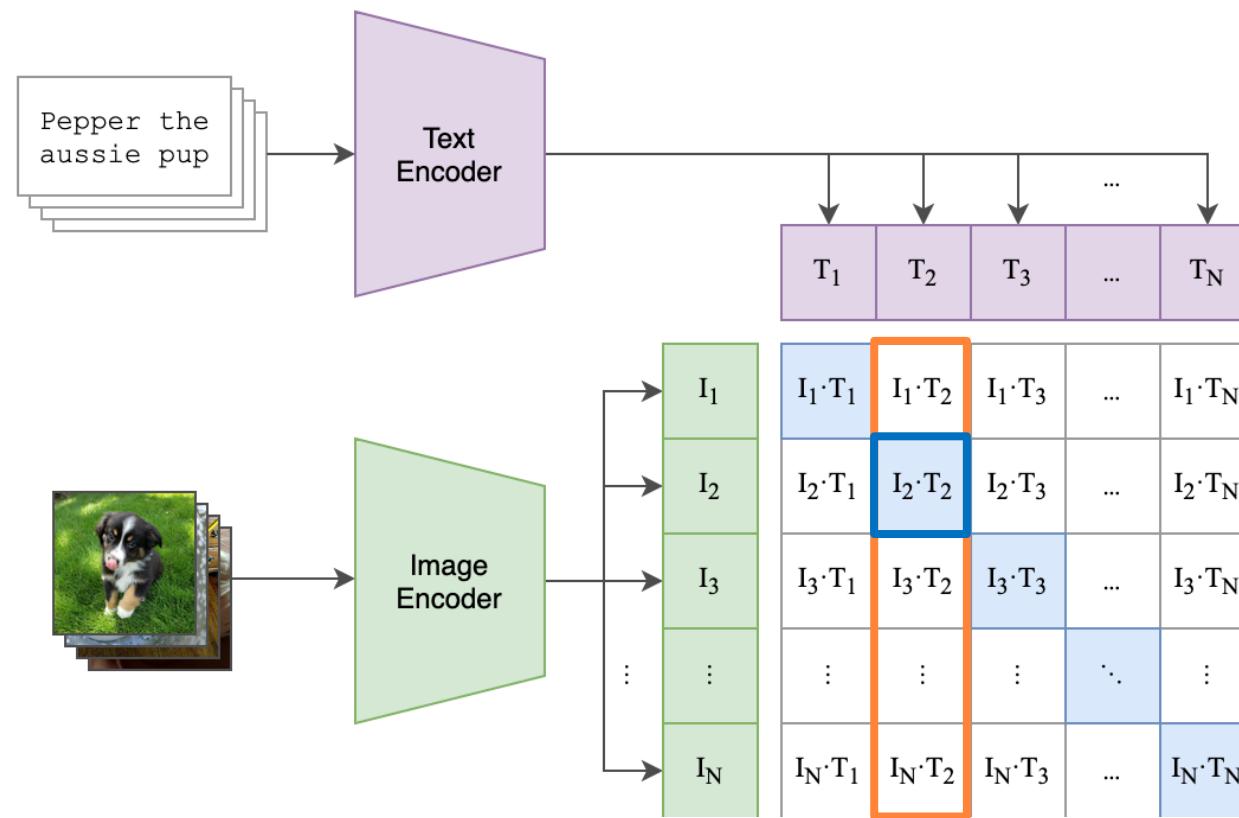


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- $\text{total_loss} = (\text{image_to_text_loss} + \text{text_to_image_loss}) / 2$

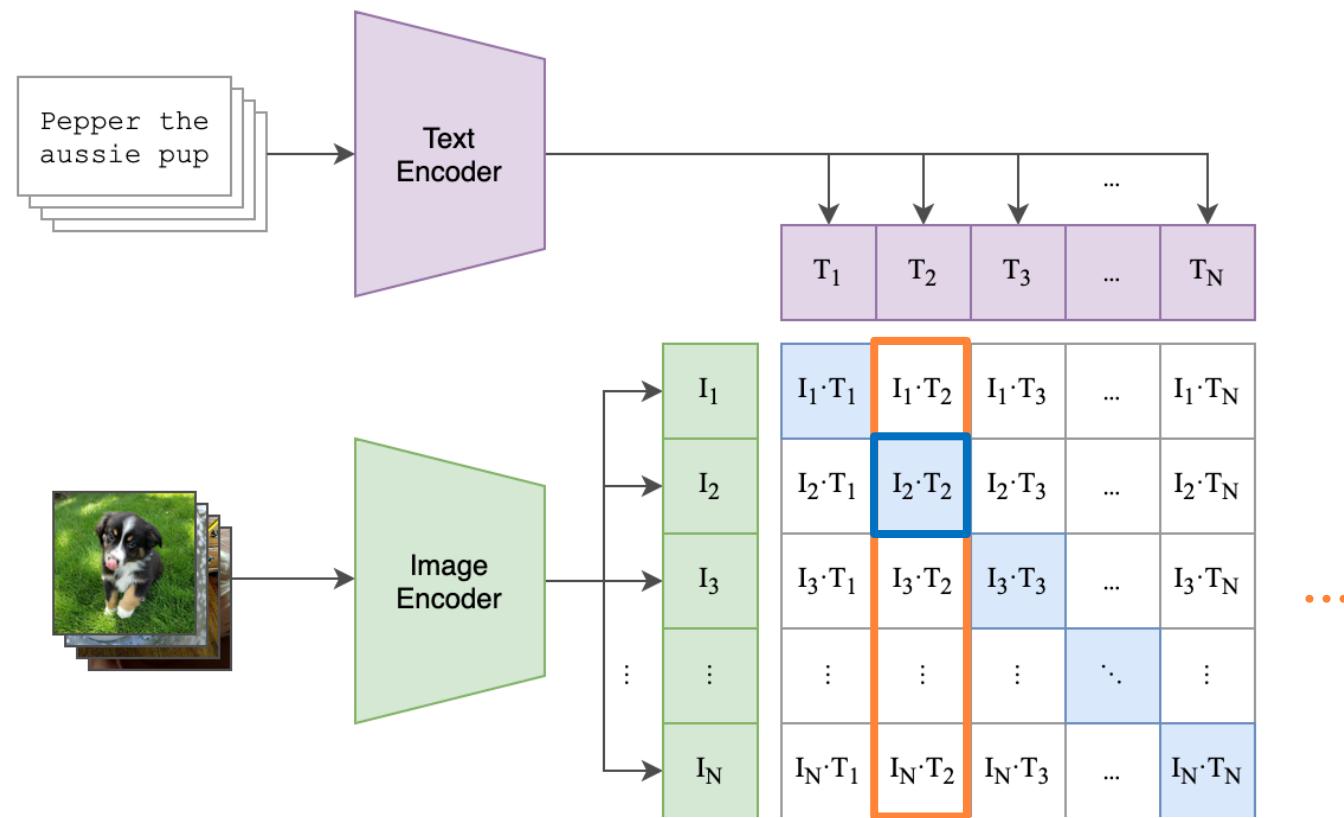


Image from: <https://github.com/openai/CLIP>

Contrastive Loss

- **total_loss** = **(image_to_text_loss + text_to_image_loss) / 2**

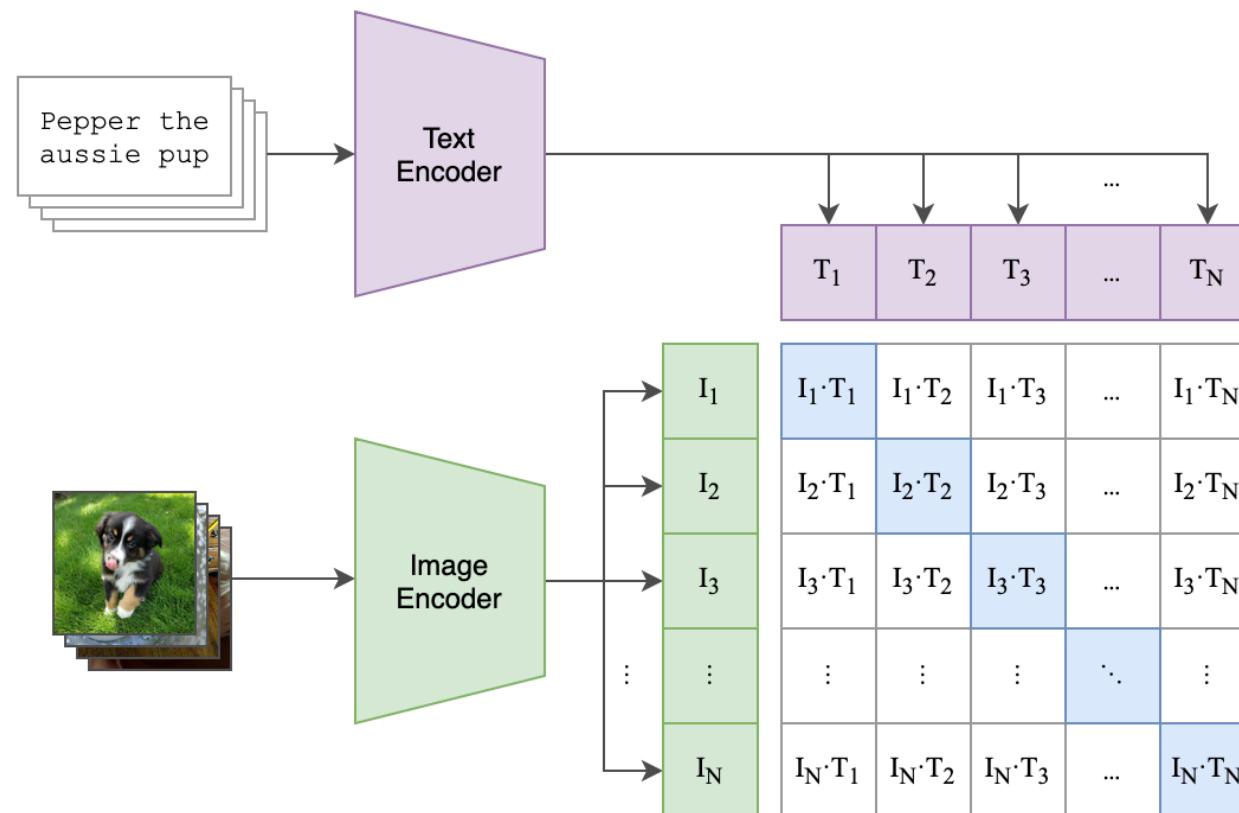
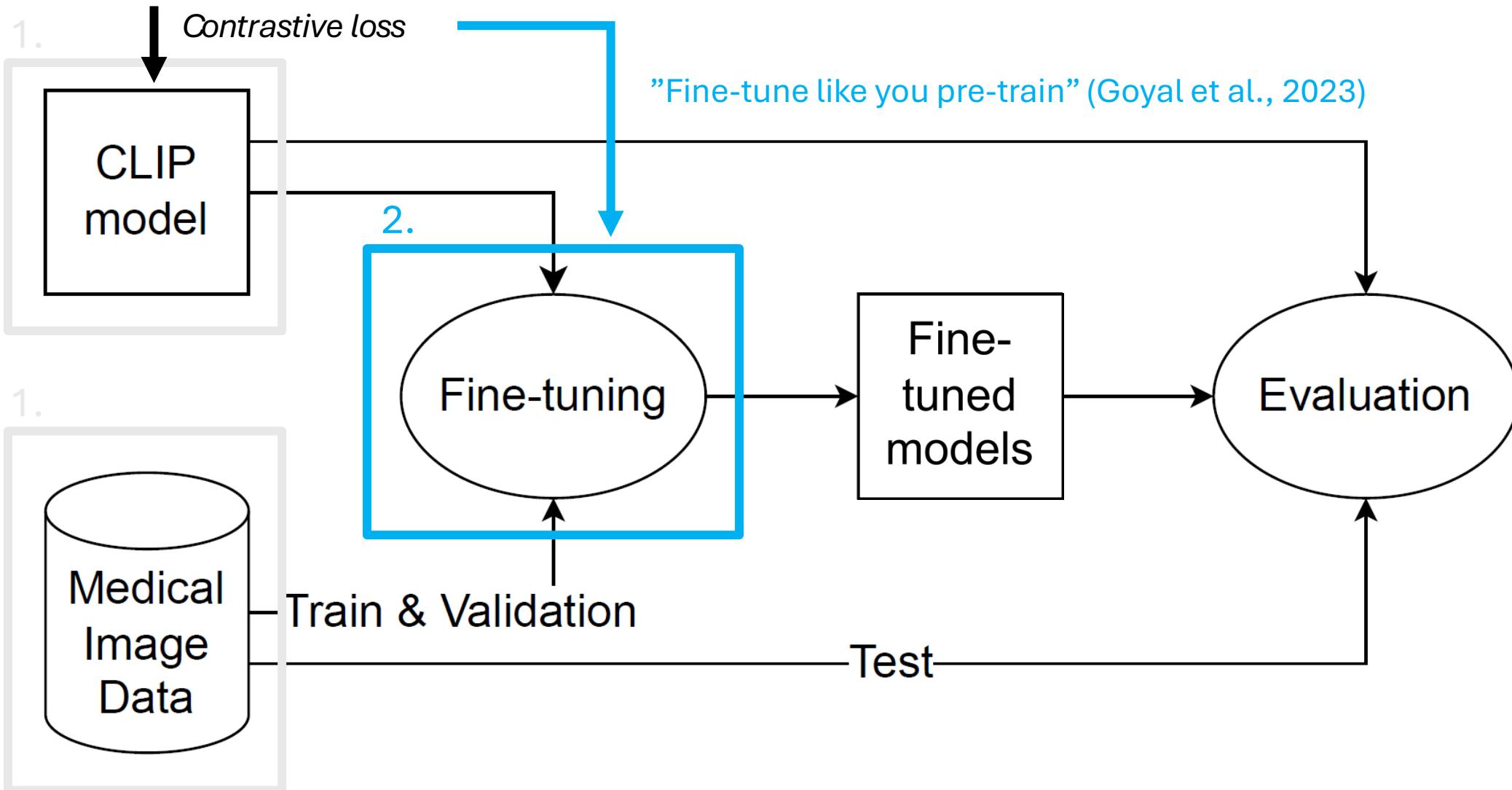
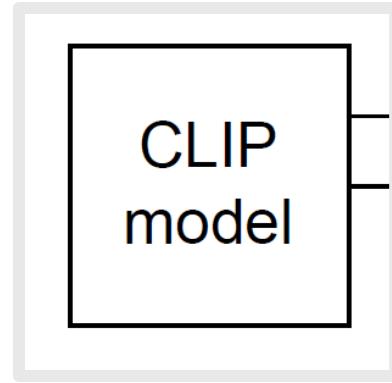


Image from: <https://github.com/openai/CLIP>

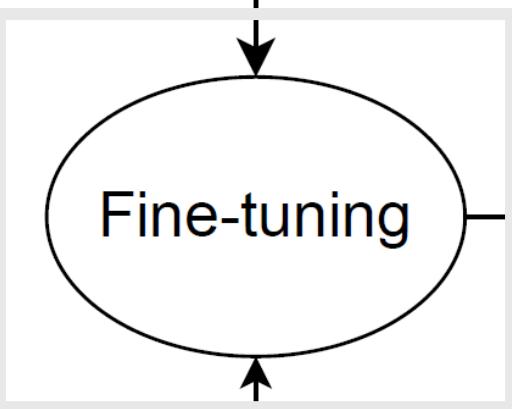
Pre-training



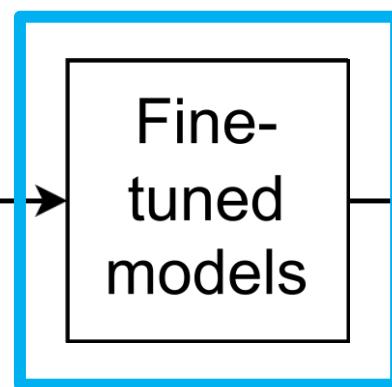
1.



2.

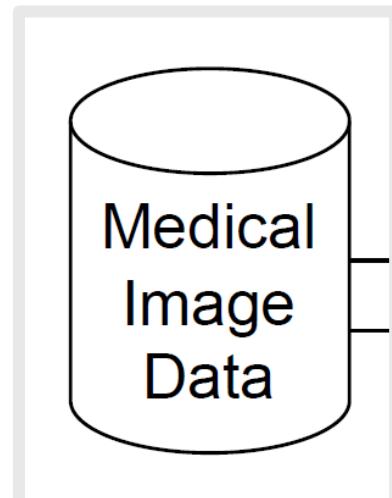


2.



Evaluation

1.



Train & Validation

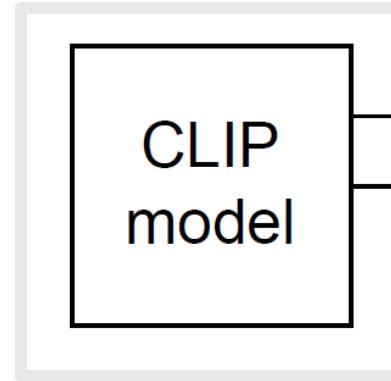
Test

Diagram illustrating the workflow for fine-tuning a CLIP model on medical image data:

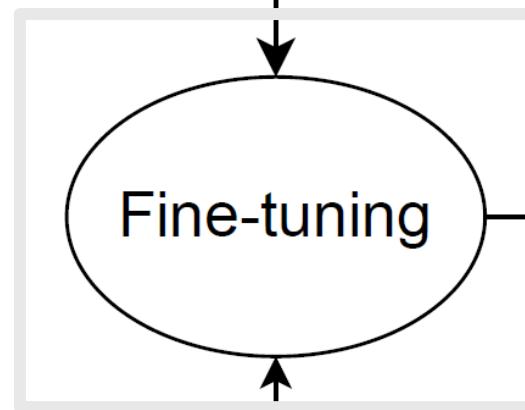
- CLIP model** (1.)
- Medical Image Data** (1.)
- Fine-tuning** (2.)
- Fine-tuned models** (2.)
- Evaluation**

The process involves using the CLIP model and medical image data for training and validation, then fine-tuning the model. The fine-tuned model is then evaluated. A feedback loop exists between the fine-tuning and evaluation stages.

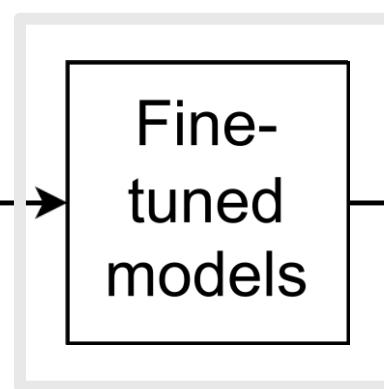
1.



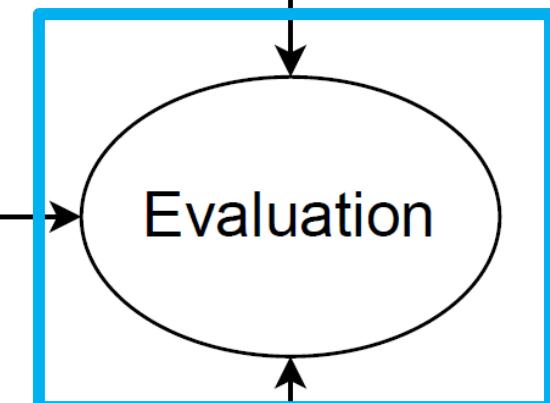
2.



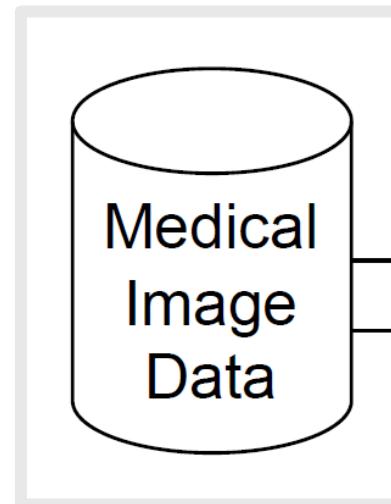
2.



3.



1.



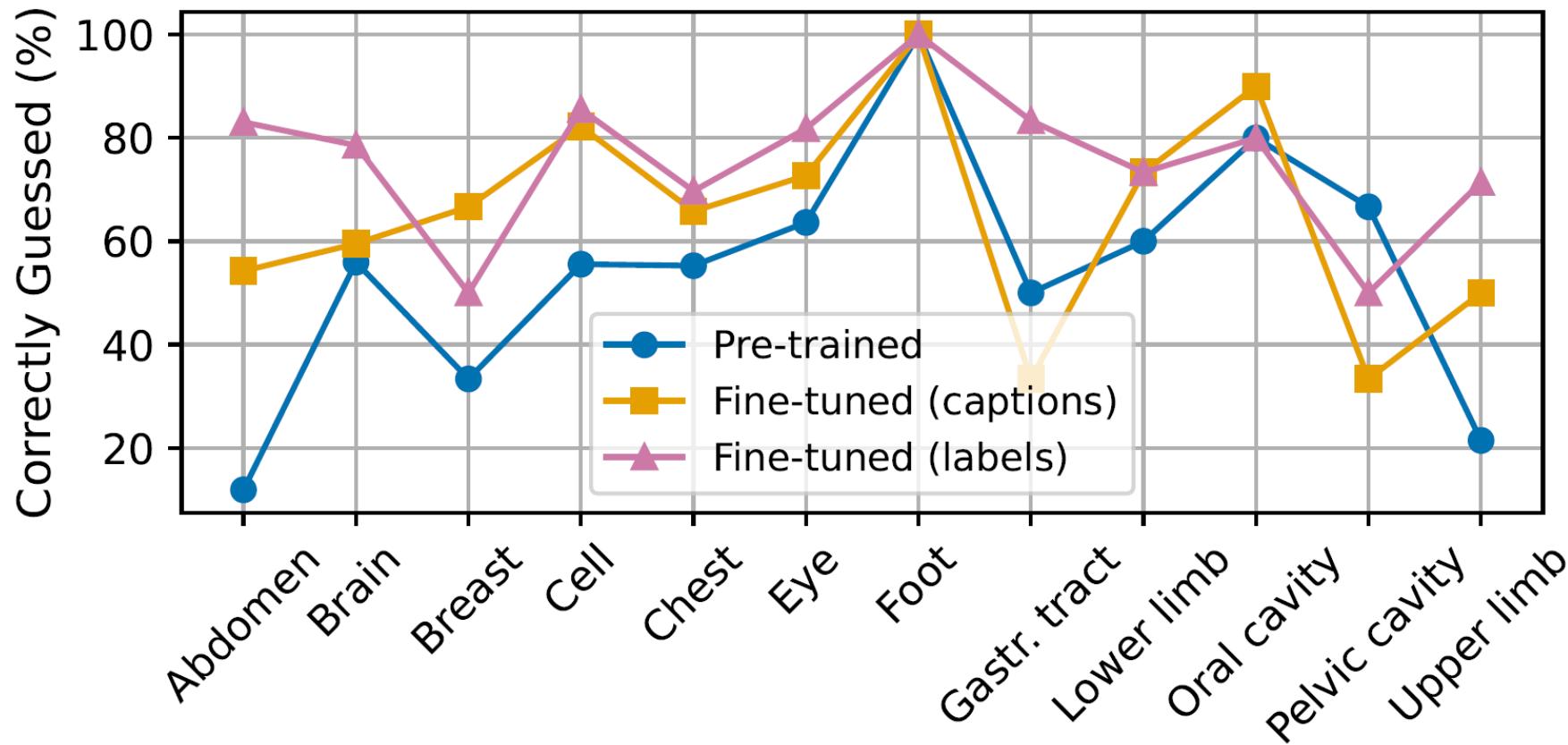
Train & Validation

Test

Results & Analysis

Model	Top-1 (%)	Top-3 (%)
Pre-trained	49.4	78.9
Fine-tuned (captions)	64.3	83.1
Fine-tuned (labels)	76.9	92.1

Accuracy scores



Prediction accuracy per body part of each model during evaluation

Questions?