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Tiny BERT and CamemBERT



The BERT Model
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The CamemBERT Model

CamemBERT is a state-of-the-art language
model for French based on the RoBERTa
architecture

A model that aims to investigate the feasibility
of training monolingual Transformer-based
language models for other languages

Shows that a relatively small web crawled
dataset (4GB) leads to results that are as good
as those obtained using larger datasets
(130+GB).




The arrangements of TinyBERT
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Context of our project



The Problem of Newer and Bigger models
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Organisation
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Experiments with CamemBERT



Exploration of CamemBERT

For CamemBERT we aimed to reproduce the Natural Language Inference performances described in
the paper. We used XNLI which is a subset of a few thousand examples from MNLI.
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CamemBERT performances with sentiment analysis

French Twitter Sentiment Analysis

1.5 million tweets in French and their sentiment.
label: Polarity of the tweet (0 = negative, 1 = positive)

CamemBERT (sentiment
analysis)

Accuracy
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After fine-tuning
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Experiments with TinyBERT



Exploration of TinyBERT : Source Code

Task-specific
Distillation

How to use:
| General l

General
P Distillation :
Text Corpus l TinyBERT '

Fine-tuned
TinyBERT

Data Augmentation = 7
ugmente
Tl Datavet Task Dataset
Steps:

1) pregenerate_training_data.py

2) general_distill.py -> pre-train

3) data_augmentation.py

4)  task_distill.py -> train & evaluate
Source:

https://github.com/huawei-noah/Pretrained-Lang
uage-Model/tree/master/TinyBERT

Advantages:
- Precise control over the tools
- Choice of datasets/parts of datasets
- Architecture strictly following those
described in the paper

Disadvantages:
- Heavy and complex code
- Obsolete code (last update 3 years ago)
- Very little documentation
- Software and hardware requirements


https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT

Exploration of TinyBERT : Hugging Face Version

Advantages:
- Classic hugging face interface
- Easily compatible with notebooks
- Already pre-train

Disadvantages:

- Reduced architecture control

Model Name:
“huawei-noah/TinyBERT _General_4L_312D”

w . Hugging Face

Hugging Face Provide:

Tokenizer (english version)
Model (pre-train on some data)
Easy access to databases




Experiments with TinyCamemBERT



TinyCamemBERT : Our buildings

Already Pre-trained Version: Our Pre-trained Version:

- pre-train on english data - pre-train on few french data
>same data as CamemBERT

Results: Results:
Parameters: 14 M 1k data, 15 min

Time : 20 minutes

Parameters: 14 M
Time : 25 minutes
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CamemBERT Vs TinyCamemBERT



Comparison CamemBERT & TinyBERT
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Conclusion



Future of TinyBERT

About 6,160 results (0.38 seconds)

Knowledge distillation remains a vibrant area of
research in machine learning, with ongoing
efforts to develop more effective distillation
techniques and apply them to a wide range of
tasks and domains

| today's experience of NLP, it is likely that
knowledge distillation and model compression
techniques will be very important
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Lifelong Language Knowledge Distillation - ACL Anthology
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address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily appliet

Making Monolingual Sentence Embeddings Multilingual using ...
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= In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4512-4525, Online. Associa
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Yoon Kim and Alexander M. Rush. 2016. Sequence-Level Ki D In Prc i of the 2016 Conference on Empirical Met




The Other Model Compression Techniques

Quantization

Weights Pruning

Low-rank approximation

Sparse matrices

Y. Gong, L. Liu, M. Yang, and L. Bourdev. 2014. Com-
pressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115.

S Han, J. Pool, J. Tran, and W. Dally. 2015. Learning
both weights and connections for efficient neural net-
work. In NIPS.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, & Weizhu
Chen. (2021). LoRA: Low-Rank Adaptation of Large
Language Models.
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