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Introduction

e Reason for choice of project

e Syntactic Parsing



The Baseline
e Baseline project

o Tagger

o Parser



Part-of-speech tagging

I want to live in peace

=1 2 A 2 I

Figure: NLP-TDDEQ®9, Liu, Lecture 4 by
M. Kuhlmann




Representation of dependency trees
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The Baseline

e FEvaluation

o Unlabeled Attachment Score - UAS

Baseline system score

Language Dataset Tagging Accuracy UAS
English EWT 0.8788 0.6681

Swedish Talbanken 0.9040 0.6236



Beam-search
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src: Dive into Deep Learning
(https://d2l.ai/index.html)



Beam-search implementation

- Vaswani & Sagae, 2016: https://aclanthology.org/Q16-1014.pdf
- Zhang & Clark, 2008: https://aclanthology.org/D08-1059.pdf
-  Fixed Window Parser With Beam

inherits from Fixed Window Parser in baseline
overwrites predict function to return predicted heads based on beam-search



https://aclanthology.org/Q16-1014.pdf
https://aclanthology.org/D08-1059.pdf

What are Error States?

e Errors occur when the parsing model makes an incorrect decision during the

transition process.

e This can happen due to various reasons:

o Insufficient information for the model to make the right choice.

o Model limitations stemming from training data or internal biases.

e Dealing with these errors using error states in training of the parser



Dealing with Error States

Backtracking:

e This approach involves revisiting previous decisions (transitions) and
exploring alternative paths.
e Buckman et al. (2016) explored this method using confidence estimates to

guide the search for the optimal parse, achieving accuracy comparable to
beam search.

e Ref: hitps://aclanthology.org/D16-1254.pdf)



https://aclanthology.org/D16-1254.pdf

Dealing with Error States

Using complex models:

e A more complex model may better capture the intricacies of human language
and avoid making errors in the first place.

e Dyeretal. (2015) explored this concept with a Stack-LSTM model, a
specialized Recurrent Neural Network designed for transition-based parsing.

e (Ref: https://arxiv.org/abs/1505.08075)



https://arxiv.org/abs/1505.08075

Dealing with Error States

Beam search (our approach**):

This method involves keeping track of multiple potential parse trees
simultaneously.

The model discards less promising ones and focuses on the most likely
candidates.

This is the approach we implemented, based on Vaswani and Sagae (2016).
Using error states to train the network for identifying parsing pitfalls and
utilizes beam search to explore promising options while avoiding dead ends.
(Ref: https://aclanthology.org/Q16-1014/)



https://aclanthology.org/Q16-1014/

Experiments, language treebanks, beam size

UAS with beam only , with error states and Baseline (Swedish
treebank, 96K tokens)
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UAS with beam only, with error states and Baseline (Icelandic
Treebank, 80K tokens)
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UAS with beam only with error states and Baseline (Hebrew
Treebank, 39K tokens)
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Our result vs Vaswani and Sagae

UAS
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Seeds

UAS against seed (beam W = 6, Swedish treebank) Box Plot of UAS with Error State
== with error states == without error states For Different Seeds
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Error state rate

UAS error state creation rates (Beam W = 3, English Treebank)
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Number of features

UAS with error states and features on Swedish Treebank (Beam W =7)
and UAS with error states and features on English Treebank (Beam W =
6)

== Swedish Treebank == English Treebank

0,70

068 \

0,66

UAS

0,64

0,62

0,60
1 2 3 4 5 6

Features




Conclusion & Analysis

e The impact of error states
e Beam-search integration
e Differences between language tree banks

e Beam size optimum



Thank you for your attention!



