Evaluating a Beam Search Tagger and Parser on
Difterent Dataset Sizes and using Fine-Tuning

Presented by NLP Group G14

Afshan Hashemi
Linus Roos

William Johansson
Yuting Huang

Intro

What is our goal?

e To find out how beam search affect the performance of transition-based tagger and
parser
e To optimize the performance with different techniques

What have we done?

Implemented a Tagger and Parser with Beam Search v.s.Greedy Search

Trained and evaluated on 4 different languages: English/Swedish/Persian/Chinese
Evaluated the system with different dataset sizes
Optimized the performance with pre-training and fine-tuning

Beam Search

What is beam search and why to use it?

e With Greedy Search, we took just the single best word at each position. In
contrast, Beam Search expands this and takes the best ‘N’ words.

e |tis casting the “light beam of its search” a little more broadly than Greedy
Search.

Beam Search Greedy Search

- "ADB”
A 05k * A AA o <l
B B 0.4)—>{AB 0.20 ﬁ
&lok| \ [e AC ¥ ¥ 8§
D D AD | |
E E |0.5)0—(AE 0.25 ﬂ ﬂ U U
END END A-END [Greedy Search]
Step t=1 t=2 Combined ﬁ
A 061017
Prob (AB | input) = Prob (A | input) * Prob (B | A, input) B o1 _ lo7s
Prob (AB) = Prob (A) * Prob (B | A) C 0.12
—05*%04 D 004)07
E 009
=0.20

END 0.05 82

Beam Search

e What is beam search and why to use it?

e How to implement beam search in the tree bank model?

Tagger

def predict(self, words):
words = [self.w2i.get(w, UNK_IDX) for w in words]
beam = [(0, [])] # (score, sequence)

for i in range(len(words)):
new_beam = []
for score, sequence in beam:
output = self.model.forward(self.featurize(words, i, sequence))
output = F.softmax(output, dim=0) # Apply softmax to the output scores
for tag in range(len(self.i2t)):
new_sequence = sequence + [tag]
new_score = score + output[tag].item() # Use the softmax output here
new_beam.append((new_score, new_sequence))
beam = sorted(new_beam, key=lambda x: x[0], reverse=True)[:self.beam_width]

return [self.i2t[i] for 1 in max(beam, key=lambda x: x[0])[1]]

Same for Parser

BN

Hyperparameter optimization

e Hyperparmeters:
e Epochs
e Learningrate
e Beam width

Beam width

e Grid search in 3 dimensions

Hyperparameter optimization - Results

2 Epochs
0.005 Learning rate

BeamWidth Tagging accuracy Parsing uas (gold)
1 90.83% 70.41%
2 90.90% 70.26%
4 90.83% 70.28%
8 90.91% 69.85%
16 90.87% 69.74%

Tagging accuracy Parsing uas (gold)

Baseline

89.87% 70.34%

Testing on Dataset Sizes

Purpose:
B Tagging Accuracy I Parsing UAS (Gold) I Parsing UAS (Chained) - |f the dataset size would
affect the accuracy
100% - If we can use a smaller
dataset for further
training
Result:

- A dataset with at least
2000 sentences yields
approximately 95%
accuracy compared to
the full dataset.

75%

50%

25%

0%

100 500 1000 2000 3176 ALL

Performance on Different Number of Sentences

Pre-training and Fine-tuning

Fine-tune both the tagger and B Only-trained Swedish Model: 100 I Fine-tuned Swedish Model:100
the parser: 80(y. Only-trained Swedish Model: 500 Fine-tuned Swedish Model:500
- Pre-trained on the Training o
data (e.g. English treebank 0%
en-ewt)

- Fine-tuned on 100 and 500
sentences from a target 20%
language(e.g. Swedish) "

- Evaluated the model on Tagging Accuracy UAS (Gold) UAS (Chained)

Dev-Data(e.g Swedish)

40%

Comparison

Differences when using fine-tuning
B Normal [Fine-tuning
100.00%
75.00%
50.00%
25.00%
0.00%
English Swedish Persian Chinese

Comparison to research

B Pre-Trained W Added

Model 1 pre-trained Model 2 pre-trained

- (@) (0]
o o o
]]]

Accuracy

N
o
1

o
l

en fr ru hi ar vi th de es ur el tr Avg

La nguage Graph from “Lifting the Curse of
Multilinguality by Pre-training
Modular Transformers" by

Conclusion

e Better than baseline

e Beam width — local and global approach

e Comparable to existing research

Global beam search proposed in “Globally
Normalized Transition-Based Neural
Networks” by Andor et al

