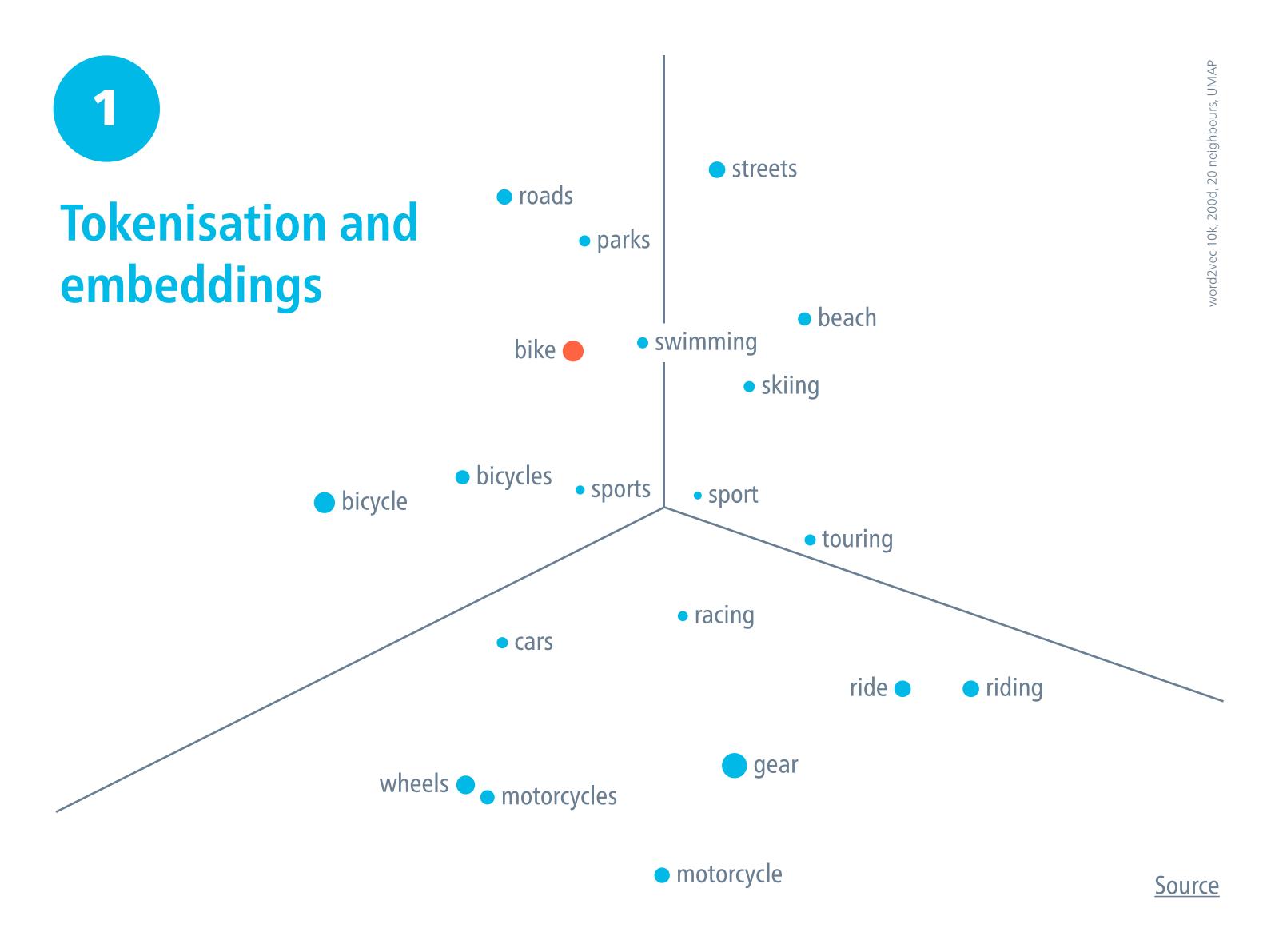
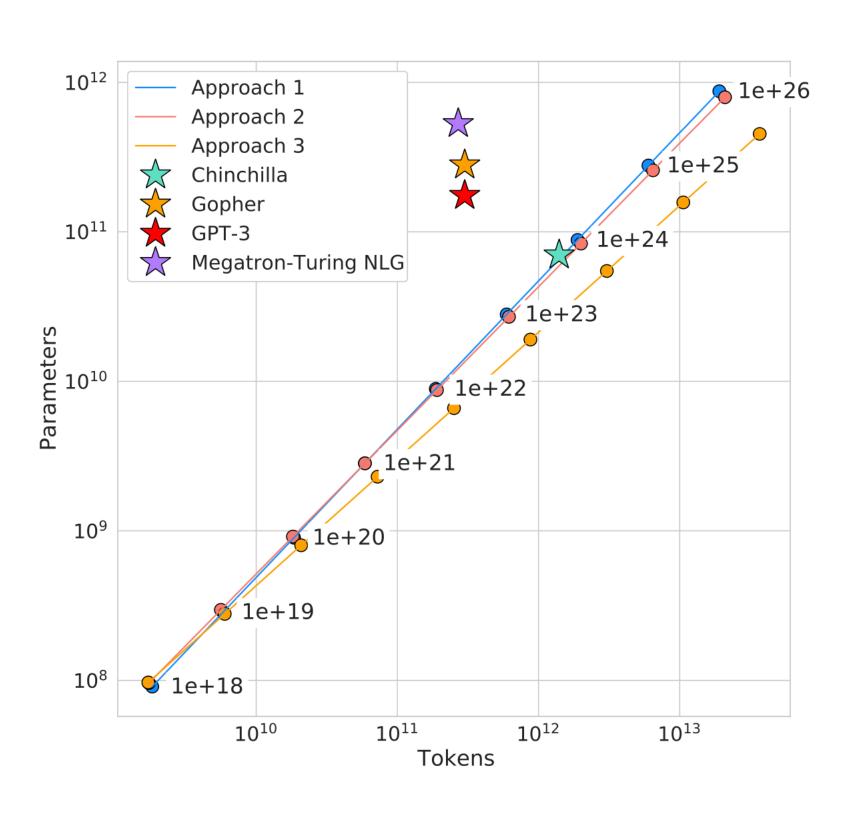

Natural Language Processing

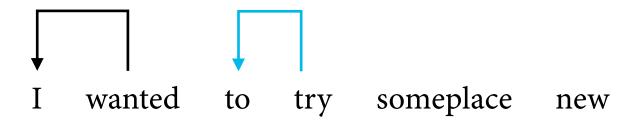

Course overview

Marco Kuhlmann


Department of Computer and Information Science



Language model architectures



3

Pre-training and fine-tuning

4 Structured prediction

wanted to try someplace new stack buffer

LA classifier

Current research

Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilitie LLMs through a Global Scale Prompt Hacking Competition

Sander Schulhoff^{1*} Jeremy Pinto^{2*} Anaum Khan¹ Louis-François Bouchard^{2,3} Ch Svetlina Anati^{5**} Valen Tagliabue^{6**} Anson Liu Kost^{7**} Christopher Carnaha Jordan Boyd-Graber¹

¹ University of Maryland ² Mila ³ Towards AI ⁴ Stanford ⁵ Technical University of Sofia ⁶ University of Milan ⁷ NYU 8 University of Arizona sschulho@umd.edu jerpint@gmail.com jbg@umiacs.umd.edu

Abstract

Large Language Models (LLMs) are deployed in interactive contexts with direct user engagement, such as chatbots and writing assistants. These deployments are vulnerable to prompt injection and jailbreaking (collectively, prompt hacking), in which models are manipulated to ignore their original instructions and follow potentially malicious ones. Although widely acknowledged as a significant security threat there is a dearth of large-scale resources and quantitative studies on prompt hacking. To ad-dress this lacuna, we launch a global prompt hacking competition, which allows for free form human input attacks. We elicit 600K+ adversarial prompts against three state-of-theart LLMs. We describe the dataset, which emrically verifies that current LLMs can indeed be manipulated via prompt hacking. We also

1 Introduction: Prompted LLMs are Everywhere... How Secure are They?

Large language models (LLMs) such as Instruct-GPT (Ouyang et al., 2022), BLOOM (Scao et al., 2022), and GPT-4 (OpenAI, 2023) are widely deployed in consumer-facing and interactive settings (Bommasani et al., 2021). Companies in diverse sectors-from startups to well established corporations—use LLMs for tasks ranging from spell correction to military command and control (Maslej et al., 2023).

Many of these applications are controlled through prompts. In our context, a prompt is a natural language string that instructs these LLM models what to do (Zamfirescu-Pereira et al., 2023; Khashabi et al., 2022; Min et al., 2022; Webson and Pavlick, 2022). The flexibility of this approach not

* Equal contribution
** Competition Winner
'More broadly, a prompt may be considered to simply be
an input to a Generative AI (possibly of a non-text modality).

prompt template (top left), which is combined w input (bottom left). We create a competition t user input can overrule the original task instruction elicit specific target output (right).

only offers an accessible entry into using po LLMs (Brown et al., 2020; Shin et al., 2020 also reveals a rapidly expanding attack surfa can leak private information (Carlini et al., generate offensive or biased contents (Shaikh 2023), and mass-produce harmful or misl messages (Perez et al., 2022). These attempt be generalized as prompt hacking—using ac ial prompts to elicit malicious results (Sch 2022). This paper focuses on prompt hack an application-grounded setting (Figure 1): is instructed to perform a downstream tas story generation), but the attackers are trying nipulate the LLM into generating a target ma output (e.g., a key phrase). This often requ tackers to be creative when designing prooverrule the original instructions

Existing work on prompt injection (Sec is limited to small-scale case studies or qua analysis. This limits our understanding susceptible state-of-the-art LLMs are to pro iection, as well as our systematic understan what types of attacks are more likely to s and thus need more defense strategies. To gap, we crowdsource adversarial prompts at sive scale via a global prompt hacking comp which provides winners with valuable pri

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4945–497 December 6-10, 2023 ©2023 Association for Computational Linguistics

Label Words are Anchors: An Information Flow Perspective for **Understanding In-Context Learning**

Lean Wang †,§ , Lei Li † , Damai Dai † , Deli Chen § , Hao Zhou§, Fandong Meng§, Jie Zhou§, Xu Sun†

[†]National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University §Pattern Recognition Center, WeChat AI, Tencent Inc., China {lean.daidamai.xusun}@pku.edu.cn nlp.lilei@gmail.com

victorchen@deepseek.com {tuxzhou,fandongmeng,withtomzhou}@tencent.com

Abstract

In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers' processing; (2) the consolidated information in label words serves as a reference for LLMs' final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.1

1 Introduction

In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaledup large language models (LLMs) (Brown et al., 2020). By instructing LLMs using few-shot demonstration examples, ICL enables them to perform a wide range of tasks, such as text classification (Min et al., 2022a) and mathematical reasoning (Wei et al., 2022). Since ICL does not require updates to millions or trillions of model parameters and relies on human-understandable natural language instructions (Dong et al., 2023), it has become a promising approach for harnessing the full potentiality of LLMs. Despite its significance, the inner working mechanism of ICL remains an open question, garnering considerable interest from research

¹https://github.com/lancopku/ label-words-are-anchors

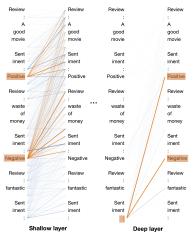


Figure 1: Visualization of the information flow in a GPT model performing ICL. The line depth reflects the significance of the information flow from the right word to the left. The flows involving label words are highlighted. Label words gather information from demonstrations in shallow layers, which is then extracted in deep layers

communities (Xie et al., 2022; Dai et al., 2022; Akyürek et al., 2022; Li et al., 2023b).

In this paper, we find that the label words serve as anchors that aggregate and distribute information in ICL. We first visualize the attention interactive pattern between tokens with a GPT model (Brown et al., 2020) on sentiment analysis (Figure 1). Initial observations suggest that label words aggregate information in shallow layers and distribute it in deep layers.² To draw a clearer picture of this phenomenon, we design two metrics based on saliency

²In this paper, "shallow" or "first" layers refer to those closer to the input, while "deep" or "last" layers are closer to the output. Here, "deep layers" include those around the midpoint, e.g., layers 25-48 in a 48-layer GPT2-XL.

ster Minimum Bayes Risk Decoding with Confidence-based Pruning

Julius Cheng, Andreas Vlachos

Department of Computer Science and Technology University of Cambridge {incc3,av308}@cam.ac.uk

Abstract

um Bayes risk (MBR) decoding outputs hypothesis with the highest expected util-over the model distribution for some utility nction. It has been shown to improve accueration problems and especially neural mane translation in both human and automatic sed algorithm for MBR is substantially more nputationally expensive than beam search, uiring a large number of samples as well as uadratic number of calls to the utility funcn, limiting its applicability. We describe an orithm for MBR which gradually grows the mber of samples used to estimate the utility e pruning hypotheses that are unlikely to e the highest utility according to confidence nates obtained with bootstrap sampling nethod requires fewer samples and drast y reduces the number of calls to the utility ion compared to standard MBR while he statistically indistinguishable in terms of uracy. We demonstrate the effectiveness our approach in experiments on three lan-age pairs, using chrF++ and COMET as util-

um Bayes risk (MBR) decoding (Bickel and m, 1977; Goel and Byrne, 2000) has recently renewed attention as a decision rule for ional sequence generation tasks, especially machine translation (NMT). In MBR, the ice with the highest expected utility with reo thez model distribution is chosen as the where the utility is usually some measure similarity. This contrasts with the more comised maximum a posteriori (MAP) decision hich returns the sequence with the highest pility under the model. MAP is generally inole, and beam search is typically used to find mation. MBR is likewise intractable,

and Eikema and Aziz (2020) propose an samplingbased approximation algorithm.

MBR has been shown to outperform MAP beam search in both automatic and qualitative evaluation in a diverse range of tasks (Suzgun et al., 2023), including NMT (Freitag et al., 2022a) and code generation (Shi et al., 2022). MBR also generalizes other previously proposed decoding methods and explains their success (Bertsch et al., 2023).

The accuracy improvement from MBR comes at a heavy cost: the number of samples used can reach thousands (Freitag et al., 2023), and the number of calls to the utility function required is quadratic in the number of samples. Often, the utility function itself is a deep neural model, rendering MBR prohibitively expensive for many use cases.

In this work, we address the computational efficiency of MBR with an iterative pruning algorithm where low-performing hypotheses are removed while the number of samples used to estimate utilities grows. Hypotheses are pruned based on their estimated probability of being the true best hypothesis under the MBR objective, thus avoiding making expensive fine-grained utility estimates for hypotheses which are unlikely to be the final

In NMT experiments on three language pairs using chrF++ (Popović, 2015), and COMET (Rei et al., 2020) as MBR utility and evaluation metrics, we show that our method maintains the same level of accuracy as standard MBR while reducing the number of utility calls by a factor of at least 7 for chrF++ and 15 for COMET. Our algorithm can also use fewer samples to reach a prediction by terminating early, unlike standard MBR.

2 Minimum Bayes risk decoding

Conditional sequence generation problems such as neural machine translation (NMT) model the probability of the next token y_t given a source sequence x and prefix $y_{< t}$ with a neural network p_{θ} . This

12473

edings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 12473–12480 December 6-10, 2023 ©2023 Association for Computational Linguistics