
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Introduction to language modelling

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Language modelling

• Language modelling is the task of predicting which word comes
next in a sequence of words.

• More formally, given a sequence of words 𝑤1 ⋯ 𝑤𝑡, we want to
know the probability of the next word, 𝑤𝑡+1:

• We are assuming that 𝑤𝑡+1 comes from a finite vocabulary 𝑉.
language models = classifiers

<latexit sha1_base64="dUx0axGv5ZeQWu4khNGWcIZLBKc=">AAAFMnicjVRdb9MwFPW2AqN8bfDIAxbVpAFJ1XRTuz1MmjY0gUTZoPuSmqpynNvWmvOh2NlUQh/5NbyOHwNviFf+AS/YabTStBOzlOjm3OPj63MdOyFnQlYq3+fmFwq3bt9ZvFu8d//Bw0dLy4+PRRBHFI5owIPo1CECOPPhSDLJ4TSMgHgOhxPnbFfnT84hEizwD+UghLZHej7rMkqkgjpLz8LVi04iX1lDbBufbQNfdCxsUzeQQoXyRWepVClX0oGnAysLSigbB53lhT+2G9DYA19SToRoWZVQthMSSUY5DIt2LCAk9Iz0oKVCn3gg2km6kyFeUYiLu0GkHl/iFP13RkI8IQaeo5gekX2Rz2lwVq4Vy+5GO2F+GEvw6WihbsyxDLC2BbssAir5QAWERkzVimmfRIRKZV5xYhldmQiBTm5FL2kKOeCw9ba5bzgBd8ef7ST2GQ1cMNMClZ4A6RHma61WcQXjHcXf01vewslL3ASPaYWhUcS4yT7BHhAZRyB0WkEYJxpVX+ZGed3A+6EqmPAM20injTmKYlpreZZl5WjWmmltljeneJt5niKZeVa9OlSklPmO9a6KPYRTDb2PPUf5qKtvBH4glGngKgnuNrVFalo7aTBfnUh8EAVX/sj+yJ//eVAzcObdSKShe3HI/IGBU32dUFBTNTaUo3duT7WRj9MquySUs1SusXha4CP0Yk6iG2hc+T8t0oyd/k0UdGfq1VkKr5kIc+x61byOOXMt3d9xnxrZQeYg7XOgW7b+LbvqurDyl8N0cFwtW7Vy7cN6aXsnuzgW0VP0HK0iC9XRNnqDDtARougL+oou0bfCZeFH4Wfh14g6P5fNeYImRuH3XwDRl9A=</latexit>𝑝(𝑤𝑡+1 | 𝑤1⋯𝑤𝑡)

Jurafsky and Martin (2026), §3

ChatGPT 4 (2023-12-31)

N-gram language models

• An 𝒏-gram is a contiguous sequence of 𝑛 words (or characters).
Sherlock Holmes had sprung out and seized the intruder by the collar.

• An 𝒏-gram model specifies conditional probabilities for the last
word in an 𝑛-gram, given the previous words:

<latexit sha1_base64="fdeqq2OBDWzelvbXjJ2aAXhkNTs=">AAAFMnicjVRdb9MwFPVYgVG+NnjkAYtp0kBJ1XRTuz1MmjY0gUTZoPuSmqpynNvWmuNEsbOphD7ya3gdPwbeEK/8A16w02hjaSdmKdHNucfH1+c69iLOpKpWv8/cmi3dvnN37l75/oOHjx7PLzw5lGESUzigIQ/jY49I4EzAgWKKw3EUAwk8DkfeybbJH51CLFko9tUwgk5A+oL1GCVKQ93559HyWVdg1/rsWvis62CX+qGSOkyF7YxeducXq5VqNvBk4OTBIsrHXndh9o/rhzQJQCjKiZRtpxqpTkpixSiHUdlNJESEnpA+tHUoSACyk2Y7GeEljfi4F8b6EQpn6L8zUhJIOQw8zQyIGshizoDTcu1E9dY6KRNRokDQ8UK9hGMVYmML9lkMVPGhDgiNma4V0wGJCVXavPKVZUxlMgJ6dStmSVuqIYeNt61dywu5f/nZSRPBaOiDnRWo9SSogDBhtNrlJYy3NH/HbHkDp69wCwJmFEZWGeMW+wQ7QFQSgzRpDWGcGlR/2WuVVQvvRrpgwnNsLZt2ydEU21kpshynQHNWbGe9sj7BWy/yNMkushq1kSZlzHesf1HsPhwb6H0SeNpHU30zFKHUpoGvJbjfMhbpaZ20yYQ+kXgvDi/8UYOxP//zoG7h3LuxSNP0Yp+JoYUzfZPQUEs3NlLjd2FP9bGPkyrbJFLTVK6xeFLgI/QTTuIbaFz4PynSSrzBTRRMZxq1aQqvmYwK7EbNvo45dS3T38s+NfODzEG5p0A3XPNb9vR14RQvh8ngsFZx6pX6h9XFza384phDz9ALtIwc1ECb6A3aQweIoi/oKzpH30rnpR+ln6VfY+qtmXzOU3RllH7/BdC8l8Y=</latexit>𝑝(𝑤𝑛 | 𝑤1⋯𝑤𝑛−1)
unigram bigram trigram

Jurafsky and Martin (2026), §3

Intuition behind n-gram models

• By the chain rule, the probability of a sequence of 𝑁 words can
be computed using conditional probabilities as

• To make probability estimates more robust, we approximate the
full history 𝑤1 ⋯ 𝑤𝑁 by overlapping 𝑛-gram windows:

<latexit sha1_base64="ImgwADZvtlR3pk7Gs1IlIz/A3DQ=">AAAFVHicjVRbb9MwFPYuhVFuGzzyYjFN2lBSNd3Ubg+VxoYmkOg26G5SUyrHOW2tOhfFzqYS+nv4NbwO8VvgATuNNpp2YpYSnXzn8+fj7zh2Qs6ELJd/zc0vLBYePFx6VHz85Omz58srL85EEEcUTmnAg+jCIQI48+FUMsnhIoyAeA6Hc2ewr/PnlxAJFvgnchhC2yM9n3UZJVJBneW34fpVx8I2dQMp8FXncAPXsR1GgdtJBnVr9OUQa8YA28Y328AT3GRgWqONzvJquVROB54OrCxYRdk47qws/LbdgMYe+JJyIkTLKoeynZBIMsphVLRjASGhA9KDlgp94oFoJ+leR3hNIS7uBpF6fIlT9N8ZCfGEGHqOYnpE9kU+p8FZuVYsu9vthPlhLMGn44W6MccywNo47LIIqORDFRAaMVUrpn0SESqVvcWJZXRlIgQ6uRW9pCnkkEP9Q/PIcALu3n62k9hnNHDBTAtUegKkR5ivtVrFNYz3FP9Ab7mOkze4CR7TCiOjiHGTfYUDIDKOQOi0gjBONKq+zO3SloGPQlUw4Rm2nU675SiKaW3mWZaVo1mbprVT2pni7eR5imTmWbXKSJFS5kfWuyn2BC40dBh7jvJRV98I/EAo08BVEtxtaovUtHbSYL46s/g4Cm78kf2xP//zoGrgzLuxSEP34oT5QwOn+jqhoKZqbCjH79yeqmMfp1X2SShnqdxh8bTAZ+jFnET30Ljxf1qkGTv9+yjoztQqsxTeMRHm2LWKeRdz5lq6v7d9amQHmYO0L4HWbf1bdtV1YeUvh+ngrFKyqqXqp63V3b3s4lhCr9BrtI4sVEO76D06RqeIou/oB7pGPxevF/8UFgqFMXV+LpvzEk2MwrO/Ps+hRg==</latexit>𝑝(𝑤1⋯𝑤𝑁) = 𝑁∏𝑘=1 𝑝(𝑤𝑘 | 𝑤1⋯𝑤𝑘−1)
<latexit sha1_base64="yEx08DKo9ccHIOP0kpX0cVdRhWU=">AAAFWnicjVRdb9MwFPU+ClsHbAPeeLGYJm2QVE03tdtDpWlDAyS6DbovqSmV47itVceJYmdTCflJ/BqekMYv4QU7jVaWdmKWWt2ce+7x9bmJnYBRIcvlXzOzc/OFR48XFotLT54+W15ZfX4u/CjE5Az7zA8vHSQIo5ycSSoZuQxCgjyHkQtncKDzF1ckFNTnp3IYkLaHepx2KUZSQZ2V98HGdceCNnZ9KeB152gT1qEdhL7biQd1K/l6BDVjAG3ju20oQjww+VsrGVcowEo2Oytr5VI5XXAysLJgDWTrpLM698d2fRx5hEvMkBAtqxzIdoxCSTEjSdGOBAkQHqAeaamQI4+IdpyeOIHrCnFh1w/Vj0uYov9WxMgTYug5iukh2Rf5nAan5VqR7O60Y8qDSBKORxt1IwalD7V90KUhwZINVYBwSFWvEPdRiLBUJhfvbKM7EwHBd4+itzSFHDJS/9g8NhyfuePHdhxxin2XmGmDSk8Q6SHKtVaruA7hvuIf6iPXYfwGNolHtUJiFCFs0m/kkCAZhUTotIIgjDWqnsyd0rYBjwPVMGIZtpOWjTmKYlpbeZZl5WjWlmntlnYneLt5niKZeVatkihSyvxEe7fNnpJLDR1FnqN81N03fO4LZRpxlQRzm9oiVdaOG5SrNxeehP6tP7I/8ud/HlQNmHk3EmnoWZxSPjRgqq8TCmqqwQZy9J87U3Xk46TKAQrkNJV7LJ4U+EJ6EUPhAzRu/Z8UaUZO/yEKejK1yjSFd1QEOXatYt7HnLqXnu94To3sRWZE2lcE1239WXbVdWHlL4fJ4LxSsqql6ufttb397OJYAK/Aa7ABLFADe+ADOAFnAIMf4Ce4Ab/nbwqzhcXC0og6O5PVvAB3VuHlX7Kuoqw=</latexit>𝑝(𝑤1⋯𝑤𝑁) = 𝑁∏𝑘=1 𝑝(𝑤𝑘 | 𝑤𝑘−𝑛+1⋯𝑤𝑘−1)

Jurafsky and Martin (2026), §3.1

Formal definition of an n-gram model

𝑛	 	 	 the model’s order (1 = unigram, 2 = bigram, …)

𝑉	 	 	 a finite set of possible words; the vocabulary

𝑝(𝑤 |𝑢)		 a probability that specifies how likely it is to observe
	 	 	 the word 𝑤 after the context (𝑛 − 1)-gram 𝑢
	 	 	 one value for each combination of a word 𝑤 and a context 𝑢

Estimation of n-gram models

• The simplest method for estimating 𝑛-gram models is maximum
likelihood estimation (MLE).
maximise the likelihood of the observations given the parameters

• We want to find model parameters (here, probabilities) that
maximise the likelihood of some text data.

• It turns out that we can solve this problem by simply counting
occurrences of 𝑛-grams and normalising.
formal derivation uses Lagrange multipliers

Jurafsky and Martin (2026), §3.1.2

MLE of unigram probabilities

#(Sherlock)

count of the
unigram Sherlock

𝑁

total number
of unigrams (tokens)

𝑝(Sherlock)

<latexit sha1_base64="7kfdYtC60W4HcRNDTRO/bhmbAQU=">AAAFKXicjVRdb9MwFPW2AqN8bSDxwotFNWmgpmq6qV0fKk0bmkCi26D7ktqqcpzb1prjRLEzVEL/DK/jz/AGvPIzeMFOo46lnZilRNfnHh9fn5vYCTiTqlz+ubC4lLtz997y/fyDh48eP1lZfXoi/SikcEx97odnDpHAmYBjxRSHsyAE4jkcTp3zXZM/vYBQMl8cqVEAXY8MBOszSpSGeivPg/VPr3ADd/ohoXGnoGfjeH/cWymUS+Vk4NnAToMCSsdhb3XpT8f1aeSBUJQTKdt2OVDdmISKUQ7jfCeSEBB6TgbQ1qEgHshunBxgjNc04uK+H+pHKJyg/66IiSflyHM00yNqKLM5A87LtSPV3+rGTASRAkEnG/UjjpWPjRvYZSFQxUc6IDRkulZMh0RbobRn+WvbmMpkAPT6UcyWllQjDo13rYOi43P3atqNI8Go74KVFKj1JCiPMGG02vk1jHc0f88cuYHj17gFHjMK42Ie4xb7DHtAVBSCNGkNYRwbVM+srdJmER8EumDCU2wrWXbF0RTL3siybDtDszcsu16qz/DqWZ4mWVlWrTLWpIT5ng2mxR7BmYH2I8/RPprqm77wpTYNXC3B3ZaxSC/rxk0m9IeID0N/6o8aTvz5nwfVIk69m4g0TS+OmBgVcaJvEhpq6cYGavLOnKk68XFWZZcEap7KDRbPCnyEQcRJeAuNqf+zIq3IGd5GwXSmVpmn8IbJIMOuVaybmHP3Mv296lMz/ZA5qM4F0EbH/JZ9fV3Y2cthNjiplOxqqfphs7C9k14cy+gFeonWkY1qaBu9RYfoGFH0BX1Fl+hb7jL3Pfcj92tCXVxI1zxD10bu918qNZRz</latexit>𝑝(𝑤) = #(𝑤)𝑁

MLE of bigram probabilities

#(Sherlock 𝑤)

count of bigrams
starting with Sherlock

𝑝(Holmes |Sherlock)

#(Sherlock Holmes)

count of the bigram
Sherlock Holmes

<latexit sha1_base64="hU0uHN8h0JKhFiyVDP+KZxKxQyM=">AAAFO3icjVRdb9MwFPVYgVG+NnjkxaKa1KG0arqp3R4qTRuaQKJs0H1JTTU5zm1rzflQbG8qoX+BX8Pr+B8884Z45YkX7DTaWNqJWUpyc+7x8fW5id2IMyFrte9zd+YLd+/dX3hQfPjo8ZOni0vPDkWoYgoHNORhfOwSAZwFcCCZ5HAcxUB8l8ORe7pt8kdnEAsWBvtyFEHPJ4OA9RklUkMni+WofO5Ynx1LreAWdvoxoYlTKqvzlXH6dFzFOciV8cliqVatpQNPB3YWlFA29k6W5v84XkiVD4GknAjRtWuR7CUkloxyGBcdJSAi9JQMoKvDgPggekm6pTFe1oiH+2Gsr0DiFP13RkJ8IUa+q5k+kUORzxlwVq6rZH+9l7AgUhICOlmorziWITb+YI/FQCUf6YDQmOlaMR0SbYvULhavLWMqExHQ61sxS1aEHHFove3sWm7IvavXXqICRkMPKmmBWk+A9AkLjFa3uIzxlubvmC23cPIKd8BnRmFsFTHusE+wA0SqGIRJawjjxKD6rbJeXbPwbqQLJjzD1tNpVxxNqdireZZt52j2asXeqG5M8TbyPE2q5FnN+liTUuY7Nrgsdh+ODfRe+a720VTfDoNQaNPA0xLc6xiL9LRe0maB/jTxXhxe+iOHE3/+50HDwpl3E5G26cU+C0YWTvVNQkMd3dhITu65PTUmPk6rbJNIzlK5weJpgY8wUJzEt9C49H9apKPc4W0UTGea9VkKr5mIcuxmvXITc+Zapr9XfWpnH7I+JZwzoC3H/JZ9fVzY+cNhOjisV+1GtfFhrbS5lR0cC+gFeonKyEZNtIneoD10gCj6gr6iC/StcFH4UfhZ+DWh3pnL5jxH10bh919IWJt4</latexit>𝑝(𝑤 | 𝑢) = #(𝑢𝑤)#(𝑢•)
<latexit sha1_base64="xOxF7mcISSCidLPL6bun3c0zZkc=">AAAFNHicjVTLbtNAFJ22AUp4tbBkMxBVapEdxWmVxyJS1aIKJEIL6UuKo2o8vklGHT/kGbcKJmu+hm35FiR2iC0/wIYZx2qpk4qOZPv63DNn7pxrjxNyJmSl8n1ufqFw5+69xfvFBw8fPX6ytPz0UARxROGABjyIjh0igDMfDiSTHI7DCIjncDhyTrd1/ugMIsECf1+OQuh5ZOCzPqNEKuhk6UW4em4bn20jXsMtbPcjQhO7tBqfr43T59r4ZKlUKVfSgacDKwtKKBt7J8sLf2w3oLEHvqScCNG1KqHsJSSSjHIYF+1YQEjoKRlAV4U+8UD0knQvY7yiEBf3g0hdvsQp+u+MhHhCjDxHMT0ihyKf0+CsXDeW/UYvYX4YS/DpZKF+zLEMsDYGuywCKvlIBYRGTNWK6ZAoP6Syr3htGV2ZCIFe34pe0hRyxKH1trNrOAF3r157SewzGrhgpgUqPQHSI8zXWt3iCsZbir+jt9zCySvcAY9phbFRxLjDPsEOEBlHIHRaQRgnGlVvZqO8YeDdUBVMeIY10mlXHEUxrfU8y7JyNGvdtJrl5hSvmecpkpln1atjRUqZ79jgsth9ONbQ+9hzlI+6+nbgB0KZBq6S4G5HW6Sm9ZI289U3ifei4NIfOZz48z8PagbOvJuItHUv9pk/MnCqrxMK6qjGhnJyz+2pNvFxWmWbhHKWyg0WTwt8hEHMSXQLjUv/p0U6sTO8jYLuTL06S+E1E2GOXa+aNzFnrqX7e9WndvYhc5D2GdCWrX/LvjourPzhMB0cVstWrVz7sFHa3MoOjkX0HL1Eq8hCdbSJ3qA9dIAo+oK+ogv0rXBR+FH4Wfg1oc7PZXOeoWuj8PsvUVyYTg==</latexit>𝑝(𝑤 | 𝑢) = #(𝑢𝑤)#(𝑢)

Evaluating language models

• Intrinsic evaluation

How does the method or model score with respect to a given
evaluation measure?
examples from classification: precision and recall

• Extrinsic evaluation

How much does the method or model help the application in
which it is embedded?
predictive input, machine translation, question answering

Jurafsky and Martin (2026), §3.2

Perplexity

• Intrinsic evaluation of language models is based on the
likelihood that a model assigns to held-out data.

• Formally, we compute the cross-entropy between two probability
distributions: a language model and the empirical distribution.

• This cross-entropy is usually presented as perplexity:

Jurafsky and Martin (2026), §3.3

<latexit sha1_base64="/d/6V1WkPtRQsaBwGN1CUAU9XKI=">AAAFOnicjVRdb9MwFPW2AqN8bfDIi8U0MVBTNd3Ubg+Tpg1NINGt0H1Jbakc57a15sRR7GwqUX4Cv4bX8UN45Q3xyhsv2Gm0sbQTs5To5tzj4+tzHTsBZ1JVKt9nZucKd+7em79ffPDw0eMnC4tPj6SIQgqHVHARnjhEAmc+HCqmOJwEIRDP4XDsnO6Y/PEZhJIJ/0CNAuh6ZOCzPqNEaai38BI+xVanHxIa20m8l+AOFwPcXDnv2bhDXaEkPu/tvUp6C0uVciUdeDKws2AJZaPZW5z703EFjTzwFeVEyrZdCVQ3JqFilENS7EQSAkJPyQDaOvSJB7IbpztK8LJGXNwXoX58hVP03xkx8aQceY5mekQNZT5nwGm5dqT6692Y+UGkwKfjhfoRx0pgYw92WQhU8ZEOCA2ZrhXTIdH2KG1i8doypjIZAL2+FbOkJdWIw+a71n7JEdy9+uzGkc+ocMFKC9R6EpRHmG+02sVljLc1f9dseRPHr3ELPGYUklIR4xb7DLtAVBSCNGkNYRwbVH9Z6+W1Et4PdMGEZ9h6Ou2KoymWvZpn2XaOZq9a9kZ5Y4K3kedpkpVn1auJJqXM92xwWewBnBhoL/Ic7aOpviF8IbVp4GoJ7raMRXpaN24wX59M3AzFpT9qOPbnfx7USjjzbizSML04YP6ohFN9k9BQSzc2UON3bk+1sY+TKjskUNNUbrB4UuAjDCJOwltoXPo/KdKKnOFtFExn6tVpCm+YDHLsetW6iTl1LdPfqz41soPMQXXOgG52zG/Z19eFnb8cJoOjatmulWsf1pa2trOLYx49Ry/QCrJRHW2ht6iJDhFFX9BXdIG+FS4KPwo/C7/G1NmZbM4zdG0Ufv8FClWbnQ==</latexit>𝑒− 1𝑁 log𝑃(𝑤1⋯𝑤𝑁)

Perplexity

0.0 0.2 0.4 0.6 0.8 1.0
probability

100
101
102
103
104

pe
rp
lex

ity

Sparsity problems

Ex
am

pl
e

at
tr

ib
ut

ed
 to

 A
bi

ga
il

Se
e

What if students opened their w
does not occur in data?

Then w has probability 0.

What if students opened their
does not occur in data?

Then we have no probability at all!

Possible solutions:
smoothing, discounting

Possible solutions:
back-off, interpolation

<latexit sha1_base64="+koJta/r3MftO7fx5mJrpL2p72s=">AAAFjHicjVRdT9swFE1h2Vi38bE97sVaQYIpqZqCWhCqhGBCm7QOtvIlNVXlOLethfOh2IF1WX7onvZD9jI7jWCkZWAp0c25x8fX5zp2Qka5qNV+lebmn+hPny08L794+WpxaXnl9RkP4ojAKQlYEF04mAOjPpwKKhhchBFgz2Fw7lweqPz5FUScBv6JGIfQ8/DQpwNKsJBQf3kcrl/bxk/bsAV8FwkXsQu+4CgIwQcXiRHQKN1A9m7L3kX2IMIksSvr/yGj1evVdCN9gCUZ/eVKrVrLBpoOrDyoaPk47q/M/7HdgMSeVCMMc961aqHoJTgSlDBIy3bMIcTkEg+hK0Mfe8B7SeZRitYk4qJBEMnHFyhD/52RYI/zsedIpofFiBdzCpyV68ZisN1LqB/GAnwyWWgQMyQCpAxHLo2ACDaWASYRlbUiMsLSSCHbUr6zjKqMh0DubkUtaXIxZtD61DkynIC5t5+9JPYpCVwwswKlHgfhYeorrW55DaF9yT9UW26h5D3qgEeVQmqUEerQH3AIWMQRcJWWEEKJQuWXuV3dMtBRKAvGLMe2s2m3HEkxrc0iy7IKNGvTtHaqO1O8nSJPkswiq1lPJSljfqbDm2JP4EJBX2LPkT6q6tuBH3BpGrhSgrkdZZGc1kva1JdnHR1HwY0/YjTx5yEPGgbKvZuItFUvTqg/NlCmrxIS6sjGhmLyLuypMfFxWuUAh2KWyj0WTwt8g2HMcPQIjRv/p0U6sTN6jILqTLM+S+ED5WGB3ayb9zFnrqX6e9undn6QGQj7CkjLVr/lQF4XVvFymA7O6lWrUW183ars7ecXx4L2VnunrWuW1tT2tI/asXaqEe13SS8tlpb0RX1L39VbE+pcKZ/zRrsz9MO/ZHG2Ow==</latexit>𝑝(𝑤 | students opened their) = #(students opened their 𝑤)#(students opened their)

Jurafsky and Martin (2026), §3.6

Smoothing

• In smoothing, we “spread out the probability mass” over the
possible outcomes more evenly than MLE would do.

• A substantial amount of research in language modelling has been
devoted to the development of advanced smoothing techniques.
additive smoothing, absolute discounting, Kneser–Ney smoothing, …

Jurafsky and Martin (2026), §3.6

The relation between smoothing and perplexity

• When smoothing a language model, we are redistributing
probability mass to outcomes we have never observed.

• This leaves a smaller fraction of the probability mass to the
outcomes we actually did observe during training.

• The more probability we are taking away from observed
outcomes, the higher the perplexity on the training data.

