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La nguage modell; ng Jurafsky and Martin (2026), §3

- Language modelling is the task of predicting which word comes

next in a sequence of words.

» More formally, given a sequence of words wy --- wy, we want to

know the probability of the next word, wy1:

p(wyy [wy -~ wy)

»  We are assuming that w41 comes from a finite vocabulary V.

language models = classifiers
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N-gram Ianguage models Jurafsky and Martin (2026), §3

» Anmn-gram is a contiguous sequence of n words (or characters).

Sherlock Holmes had sprung out and seized the intruder by the collar.
| | |
unigram bigram trigram

» An n-gram model specifies conditional probabilities for the last

word in an n-gram, given the previous words:

p(wn ‘wl "'wn—l)



Intuition behind N-gram models Jurafsky and Martin (2026), §3.1

By the chain rule, the probability of a sequence of N words can

be computed using conditional probabilities as

N

plwy - wy) = Hp(wk |wy - wy_y)
k=1

» 'To make probability estimates more robust, we approximate the

full history w -+ wn by overlapping n-gram windows:

N
plw; -~ wy) = Hp(wk | Wi+ Wee—1)
k=1



Formal definition of an n-gram model

plw|u)

the model’s order (1 = unigram, 2 = bigram, ...)
a finite set of possible words; the vocabulary

a probability that specifies how likely it is to observe
the word w after the context (n — 1)-gram u

one value for each combination of a word w and a context u



Estimation of Nn-gram models Jurafsky and Martin (2026), §3.1.2

The simplest method for estimating n-gram models is maximum
likelihood estimation (MLE).

maximise the likel

We want to finc

ihood of the observations given the parameters

. model parameters (here, probabilities) that

maximise the li

celihood of some text data.

It turns out that we can solve this problem by simply counting

occurrences of n-grams and normalising.

formal derivation uses Lagrange multipliers



MLE of unigram probabilities

p(Sherlock)
#(Sherlock)
count of the
unigram Sherlock
p(w)
N

total number

of unigrams (tokens)




MLE of bigram probabilities

p(Holmes|Sherlock)

#(Sherlock Holmes)
count of the bigram
Sherlock Holmes p (w
#(Sherlock w)
p(w

count of bigrams

starting with Sherlock




Evaluating Ianguage models Jurafsky and Martin (2026), §3.2

e Intrinsic evaluation

How does the method or model score with respect to a given

evaluation measure?

examples from classification: precision and recall

e Extrinsic evaluation

How much does the method or model help the application in
which it is embedded?

predictive input, machine translation, question answering



PEI’plEXity Jurafsky and Martin (2026), §3.3

» Intrinsic evaluation of language models is based on the

likelihood that a model assigns to held-out data.

» Formally, we compute the cross-entropy between two probability
distributions: a language model and the empirical distribution.

» 'This cross-entropy is usually presented as perplexity:

e % log P(w; - --wyy)



Perplexity
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Sparsity problems

Jurafsky and Martin (2026), §3.6

Possible solutions:

What if students opened their w _ _ _
smoothing, discounting

does not occur in data?
Then w has probability 0.

# (students opened their w)

p(w | students opened their) = .
# (students opened their)

What if students opened their
does not occur in data?
Then we have no probability at all!

Possible solutions:
back-off, interpolation

Example attributed to Abigail See



Smoothing Jurafsky and Martin (2026), §3.6

In smoothing, we “spread out the probability mass” over the
possible outcomes more evenly than MLE would do.

A substantial amount of research in language modelling has been
devoted to the development of advanced smoothing techniques.

additive smoothing, absolute discounting, Kneser—-Ney smoothing, ...



The relation between smoothing and perplexity

»  When smoothing a language moc

el, we are redistributing

probability mass to outcomes we |

have never observed.

o 'This leaves a smaller fraction of the probability mass to the

outcomes we actually did observe

during training.

» The more probability we are taking away from observed

outcomes, the higher the perplexity on the training data.



