

# Introduction to language modelling

Marco Kuhlmann

Department of Computer and Information Science

# Language modelling

Jurafsky and Martin (2026), §3

- **Language modelling** is the task of predicting which word comes next in a sequence of words.
- More formally, given a sequence of words  $w_1 \cdots w_t$ , we want to know the probability of the next word,  $w_{t+1}$ :

$$p(w_{t+1} \mid w_1 \cdots w_t)$$

- We are assuming that  $w_{t+1}$  comes from a finite **vocabulary**  $V$ .

language models = classifiers

language modelling

- language modelling
- language modelling nlp
- language modelling using lstm networks
- language modelling makes sense
- language modelling in python
- language modelling with rnn
- language modelling pytorch
- language modelling approach
- language modelling toolkit
- language modelling dataset

Sweden

Advertising   Business   About

Privacy   Terms   Settings



ChatGPT 4 (2023-12-31)

# N-gram language models

Jurafsky and Martin (2026), §3

- An ***n*-gram** is a contiguous sequence of *n* words (or characters).

Sherlock Holmes had sprung out and seized the intruder by the collar.

The sentence is segmented into three parts: 'Sherlock Holmes' (unigram), 'sprung out' (bigram), and 'by the collar' (trigram). Vertical lines above the words 'Holmes', 'sprung', and 'by' indicate the boundaries of these n-grams. Below the sentence, the labels 'unigram', 'bigram', and 'trigram' are written in blue, red, and purple respectively, corresponding to the vertical lines above them.

- An ***n*-gram model** specifies conditional probabilities for the last word in an *n*-gram, given the previous words:

$$p(w_n | w_1 \dots w_{n-1})$$

# Intuition behind n-gram models

Jurafsky and Martin (2026), §3.1

- By the chain rule, the probability of a sequence of  $N$  words can be computed using conditional probabilities as

$$p(w_1 \cdots w_N) = \prod_{k=1}^N p(w_k | w_1 \cdots w_{k-1})$$

- To make probability estimates more robust, we approximate the full history  $w_1 \cdots w_N$  by overlapping  $n$ -gram windows:

$$p(w_1 \cdots w_N) = \prod_{k=1}^N p(w_k | w_{k-n+1} \cdots w_{k-1})$$

# Formal definition of an n-gram model

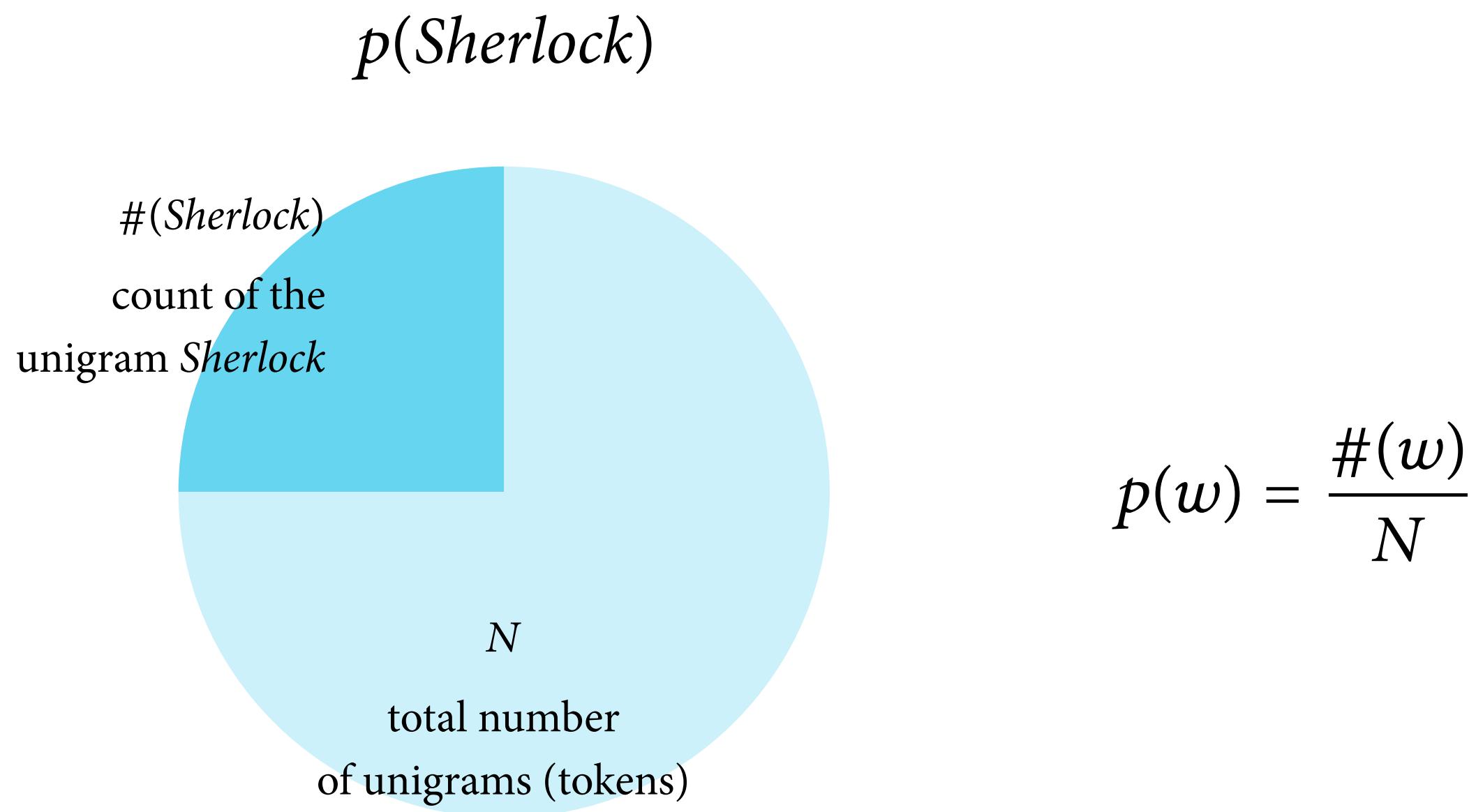
|          |                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $n$      | the model's order (1 = unigram, 2 = bigram, ...)                                                                                                                                 |
| $V$      | a finite set of possible words; the vocabulary                                                                                                                                   |
| $p(w u)$ | a probability that specifies how likely it is to observe<br>the word $w$ after the context $(n - 1)$ -gram $u$<br>one value for each combination of a word $w$ and a context $u$ |

# Estimation of n-gram models

Jurafsky and Martin (2026), §3.1.2

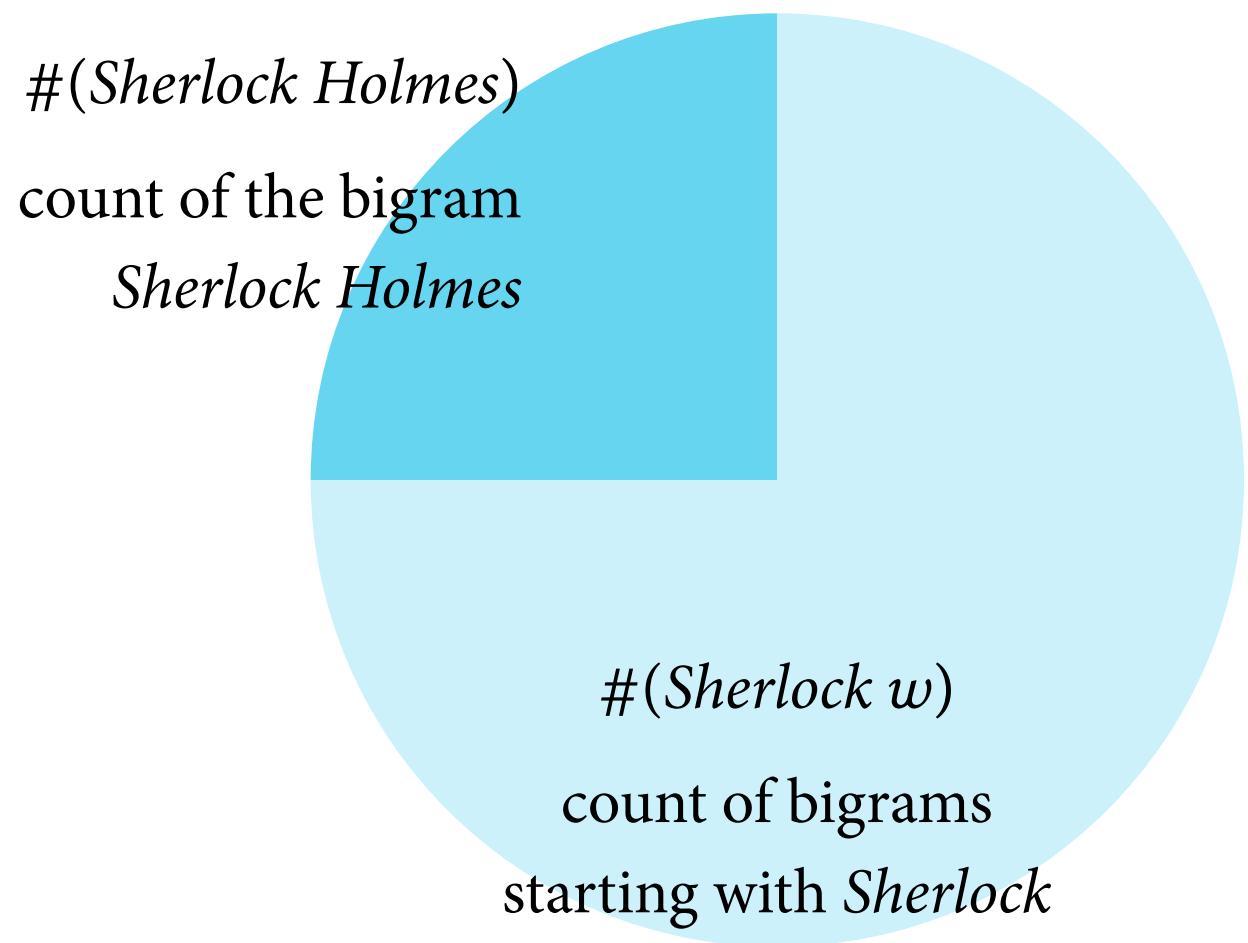
- The simplest method for estimating  $n$ -gram models is **maximum likelihood estimation (MLE)**.  
maximise the likelihood of the observations given the parameters
- We want to find model parameters (here, probabilities) that maximise the likelihood of some text data.
- It turns out that we can solve this problem by simply counting occurrences of  $n$ -grams and normalising.  
formal derivation uses Lagrange multipliers

# MLE of unigram probabilities



# MLE of bigram probabilities

$$p(Holmes | Sherlock)$$



$$p(w | u) = \frac{\#(uw)}{\#(u\bullet)}$$

$$p(w | u) = \frac{\#(uw)}{\#(u)}$$

# Evaluating language models

Jurafsky and Martin (2026), §3.2

- **Intrinsic evaluation**

How does the method or model score with respect to a given evaluation measure?

examples from classification: precision and recall

- **Extrinsic evaluation**

How much does the method or model help the application in which it is embedded?

predictive input, machine translation, question answering

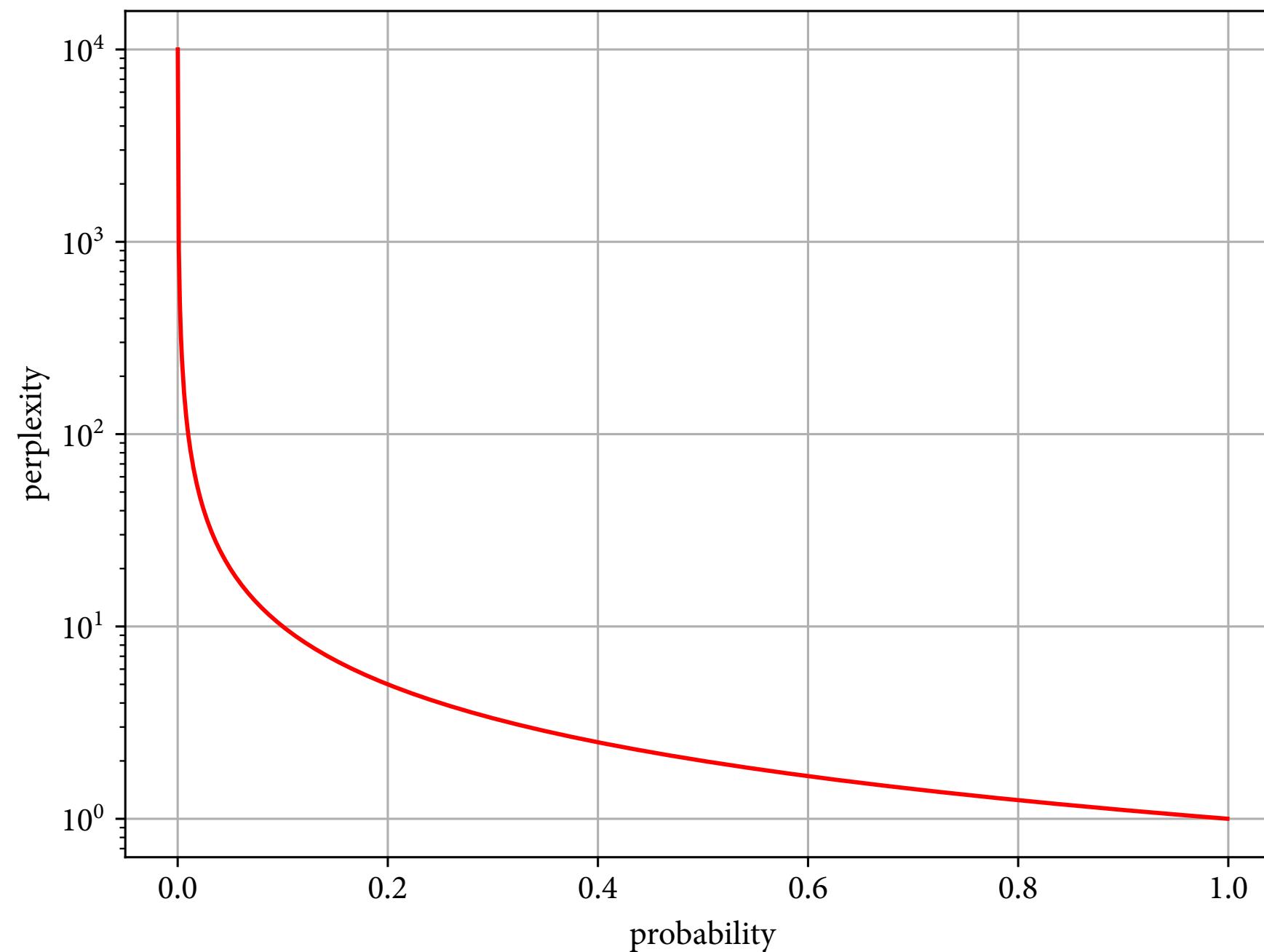
# Perplexity

Jurafsky and Martin (2026), §3.3

- Intrinsic evaluation of language models is based on the likelihood that a model assigns to held-out data.
- Formally, we compute the cross-entropy between two probability distributions: a language model and the empirical distribution.
- This cross-entropy is usually presented as **perplexity**:

$$e^{-\frac{1}{N} \log P(w_1 \cdots w_N)}$$

# Perplexity



# Sparsity problems

Jurafsky and Martin (2026), §3.6

What if *students opened their w* does not occur in data?  
Then  $w$  has probability 0.

Possible solutions:  
smoothing, discounting

$$p(w \mid \text{students opened their}) = \frac{\#\text{(students opened their } w\text{)}}{\#\text{(students opened their)}}$$

What if *students opened their* does not occur in data?  
Then we have no probability at all!

Possible solutions:  
back-off, interpolation

# Smoothing

Jurafsky and Martin (2026), §3.6

- In **smoothing**, we “spread out the probability mass” over the possible outcomes more evenly than MLE would do.
- A substantial amount of research in language modelling has been devoted to the development of advanced smoothing techniques.  
additive smoothing, absolute discounting, Kneser–Ney smoothing, ...

# The relation between smoothing and perplexity

- When smoothing a language model, we are redistributing probability mass to outcomes we have never observed.
- This leaves a smaller fraction of the probability mass to the outcomes we actually *did* observe during training.
- The more probability we are taking away from observed outcomes, the higher the perplexity on the training data.