
This work is licensed under a  
Creative Commons Attribution 4.0 International License.

Introduction to language modelling

Marco Kuhlmann 
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/


Language modelling

• Language modelling is the task of predicting which word comes 
next in a sequence of words. 

• More formally, given a sequence of words 𝑤1 ⋯ 𝑤𝑡, we want to 
know the probability of the next word, 𝑤𝑡+1: 

• We are assuming that 𝑤𝑡+1 comes from a finite vocabulary 𝑉. 
language models = classifiers
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N-gram language models

• An 𝒏-gram is a contiguous sequence of 𝑛 words (or characters). 
Sherlock Holmes had sprung out and seized the intruder by the collar. 

• An 𝒏-gram model specifies conditional probabilities for the last 
word in an 𝑛-gram, given the previous words:
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Intuition behind n-gram models

• By the chain rule, the probability of a sequence of 𝑁 words can 
be computed using conditional probabilities as 

• To make probability estimates more robust, we approximate the 
full history 𝑤1 ⋯ 𝑤𝑁 by overlapping 𝑛-gram windows:
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Formal definition of an n-gram model

𝑛	 	 	 the model’s order (1 = unigram, 2 = bigram, …) 

𝑉	 	 	 a finite set of possible words; the vocabulary 

𝑝(𝑤 |𝑢)		 a probability that specifies how likely it is to observe  
	 	 	 the word 𝑤 after the context (𝑛 − 1)-gram 𝑢 
	 	 	 one value for each combination of a word 𝑤 and a context 𝑢



Estimation of n-gram models

• The simplest method for estimating 𝑛-gram models is maximum 
likelihood estimation (MLE). 
maximise the likelihood of the observations given the parameters 

• We want to find model parameters (here, probabilities) that 
maximise the likelihood of some text data. 

• It turns out that we can solve this problem by simply counting 
occurrences of 𝑛-grams and normalising. 
formal derivation uses Lagrange multipliers

Jurafsky and Martin (2026), §3.1.2



MLE of unigram probabilities

#(Sherlock) 

count of the  
unigram Sherlock

𝑁 

total number  
of unigrams (tokens)

𝑝(Sherlock)
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MLE of bigram probabilities

#(Sherlock 𝑤) 

count of bigrams  
starting with Sherlock

𝑝(Holmes |Sherlock)

#(Sherlock Holmes) 

count of the bigram  
Sherlock Holmes
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Evaluating language models

• Intrinsic evaluation 

How does the method or model score with respect to a given 
evaluation measure? 
examples from classification: precision and recall 

• Extrinsic evaluation 

How much does the method or model help the application in 
which it is embedded? 
predictive input, machine translation, question answering

Jurafsky and Martin (2026), §3.2



Perplexity

• Intrinsic evaluation of language models is based on the 
likelihood that a model assigns to held-out data. 

• Formally, we compute the cross-entropy between two probability 
distributions: a language model and the empirical distribution. 

• This cross-entropy is usually presented as perplexity:

Jurafsky and Martin (2026), §3.3
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Perplexity
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Sparsity problems
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What if students opened their w  
does not occur in data?  

Then w has probability 0.

What if students opened their  
does not occur in data?  

Then we have no probability at all!

Possible solutions:  
smoothing, discounting

Possible solutions:  
back-off, interpolation
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Smoothing

• In smoothing, we “spread out the probability mass” over the 
possible outcomes more evenly than MLE would do. 

• A substantial amount of research in language modelling has been 
devoted to the development of advanced smoothing techniques. 
additive smoothing, absolute discounting, Kneser–Ney smoothing, …

Jurafsky and Martin (2026), §3.6



The relation between smoothing and perplexity

• When smoothing a language model, we are redistributing 
probability mass to outcomes we have never observed. 

• This leaves a smaller fraction of the probability mass to the 
outcomes we actually did observe during training. 

• The more probability we are taking away from observed 
outcomes, the higher the perplexity on the training data.


