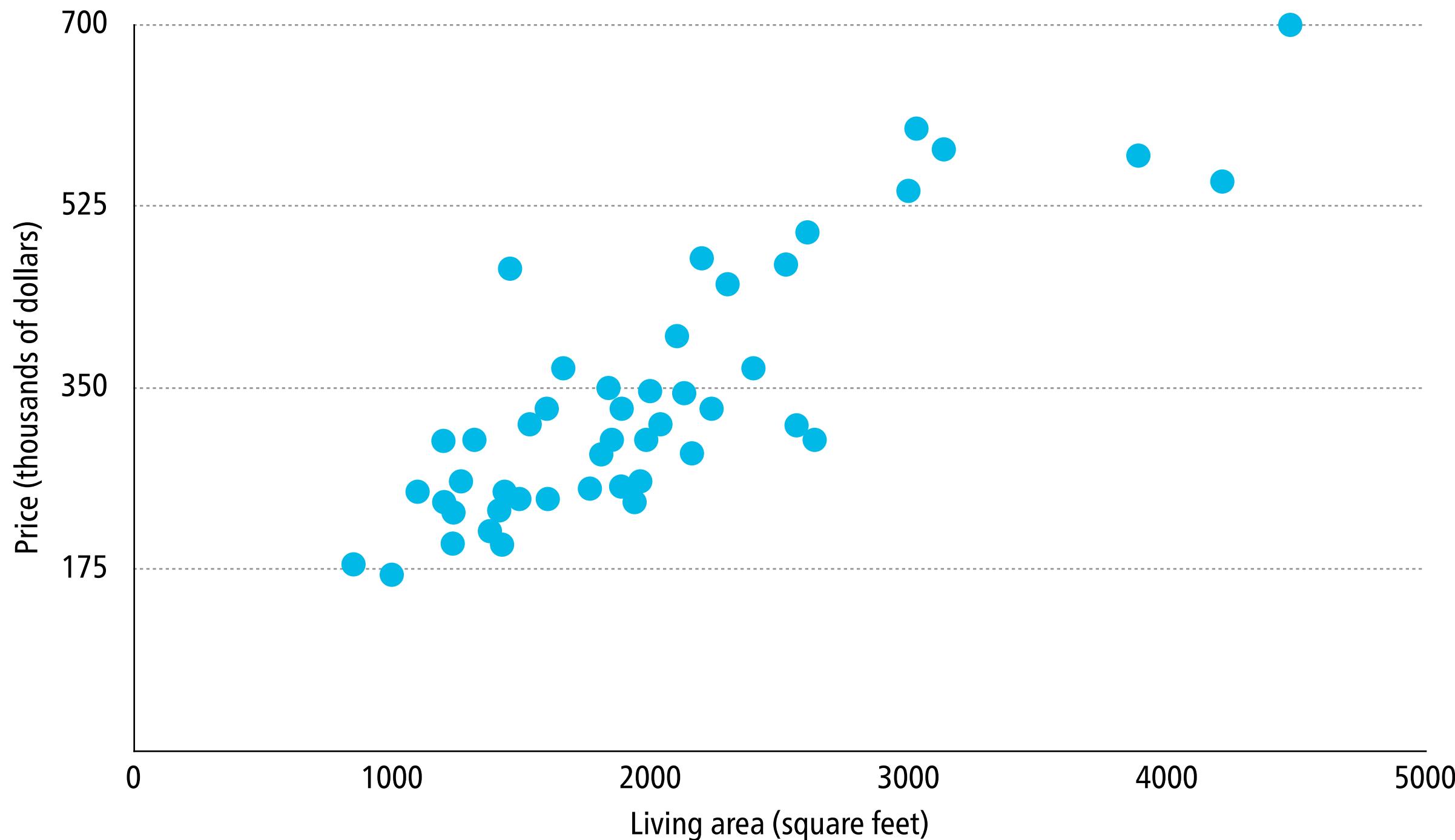


Linear neural networks

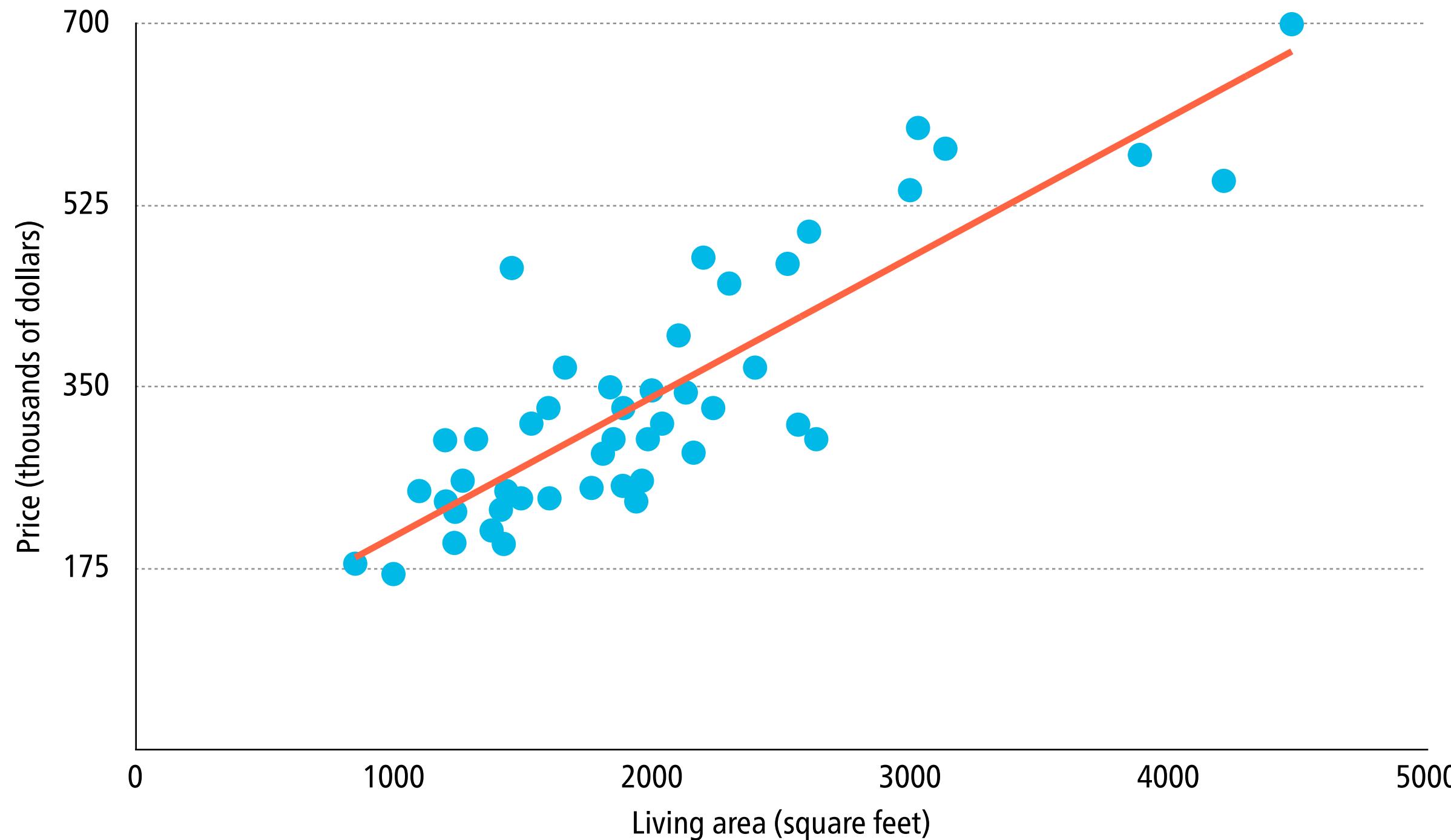
Marco Kuhlmann

Department of Computer and Information Science

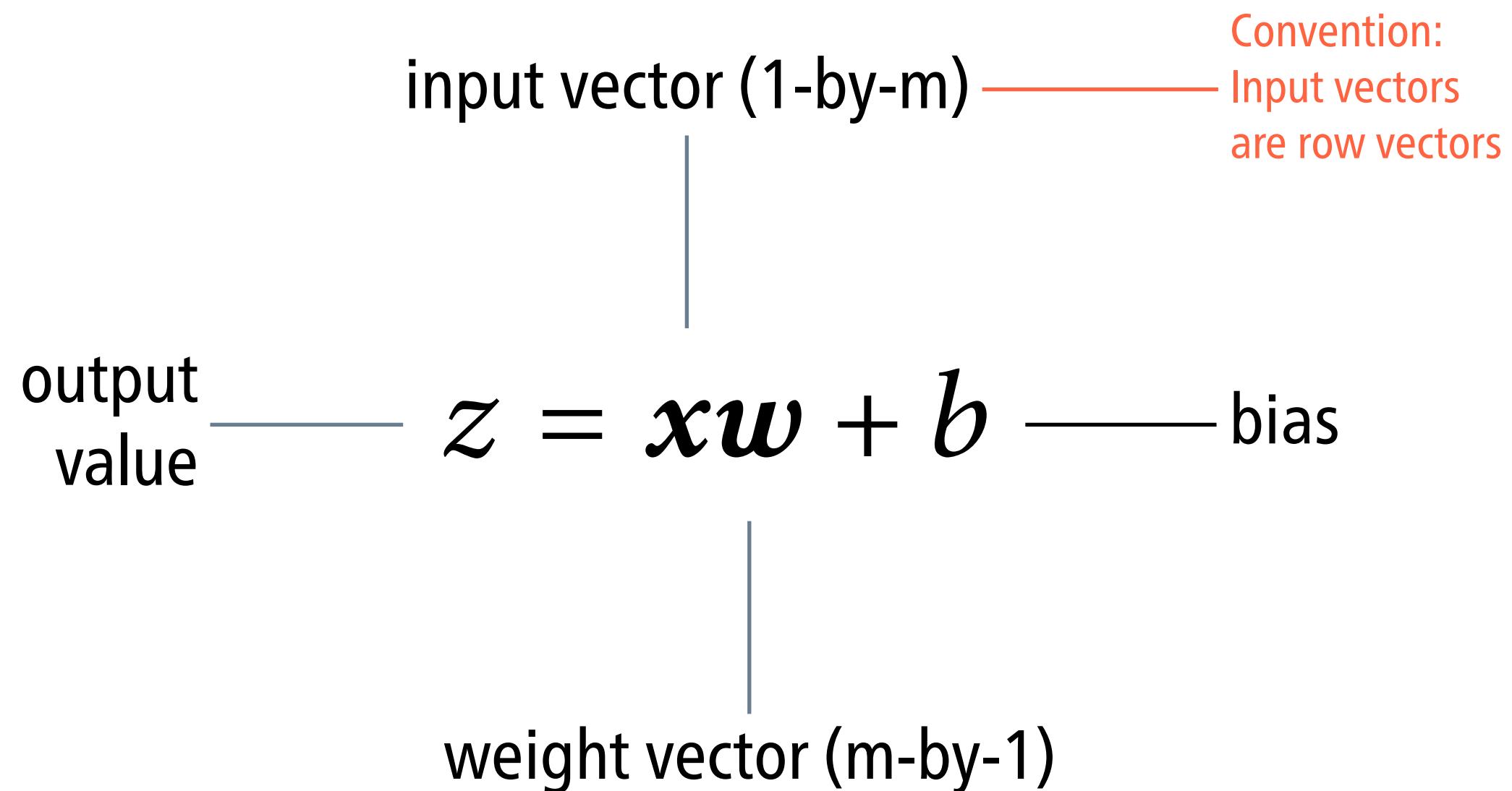
Linear regression with one variable



Linear regression with one variable

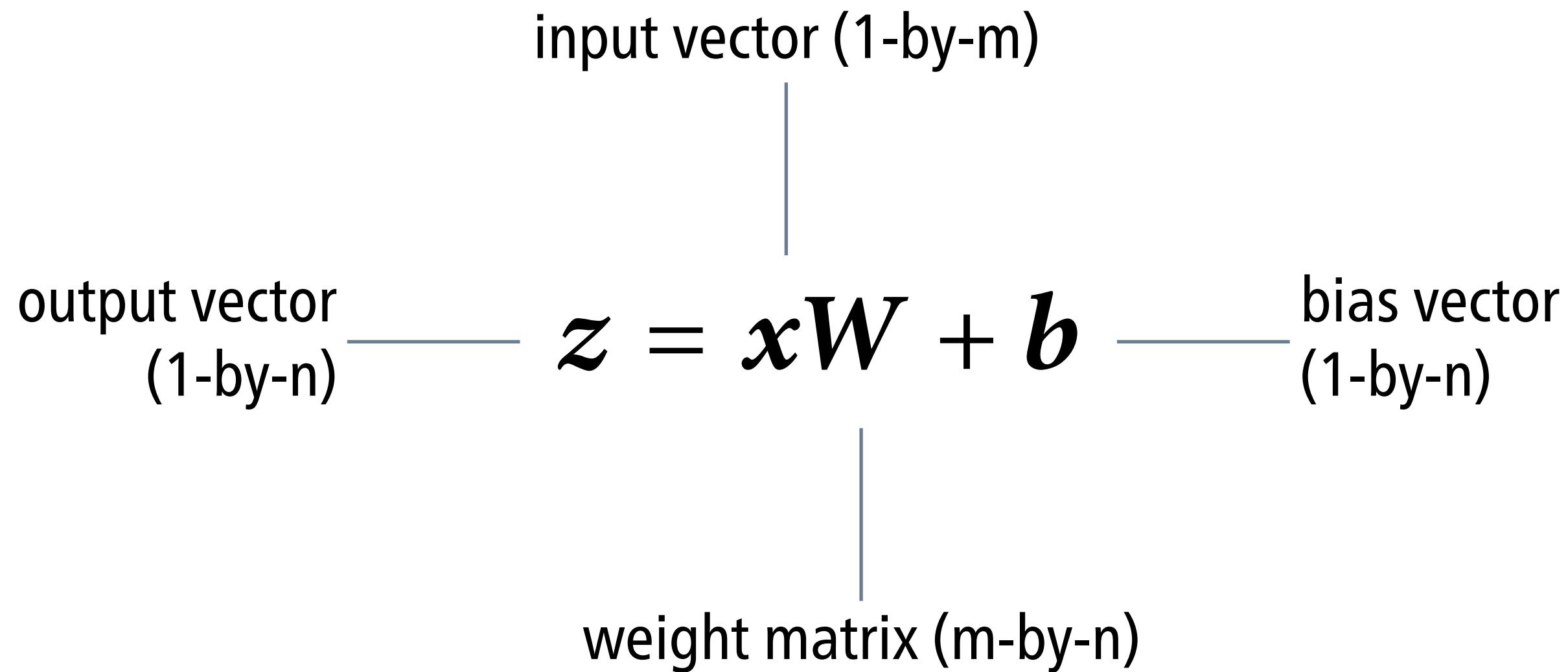


The linear model



m = number of features (independent variables)

The linear model (multivariate version)



m = number of input features, n = number of output features

Linear classification

- We can think of $z = \mathbf{x}W + \mathbf{b}$ as a vector of class-specific scores. The higher the score $z[k]$, the more likely \mathbf{x} belongs to class k .
- We can use these scores for classification: We predict the input \mathbf{x} to belong to the highest-scoring class k .
- With linear models, we can only solve a rather restricted class of classification problems (linearly separable).

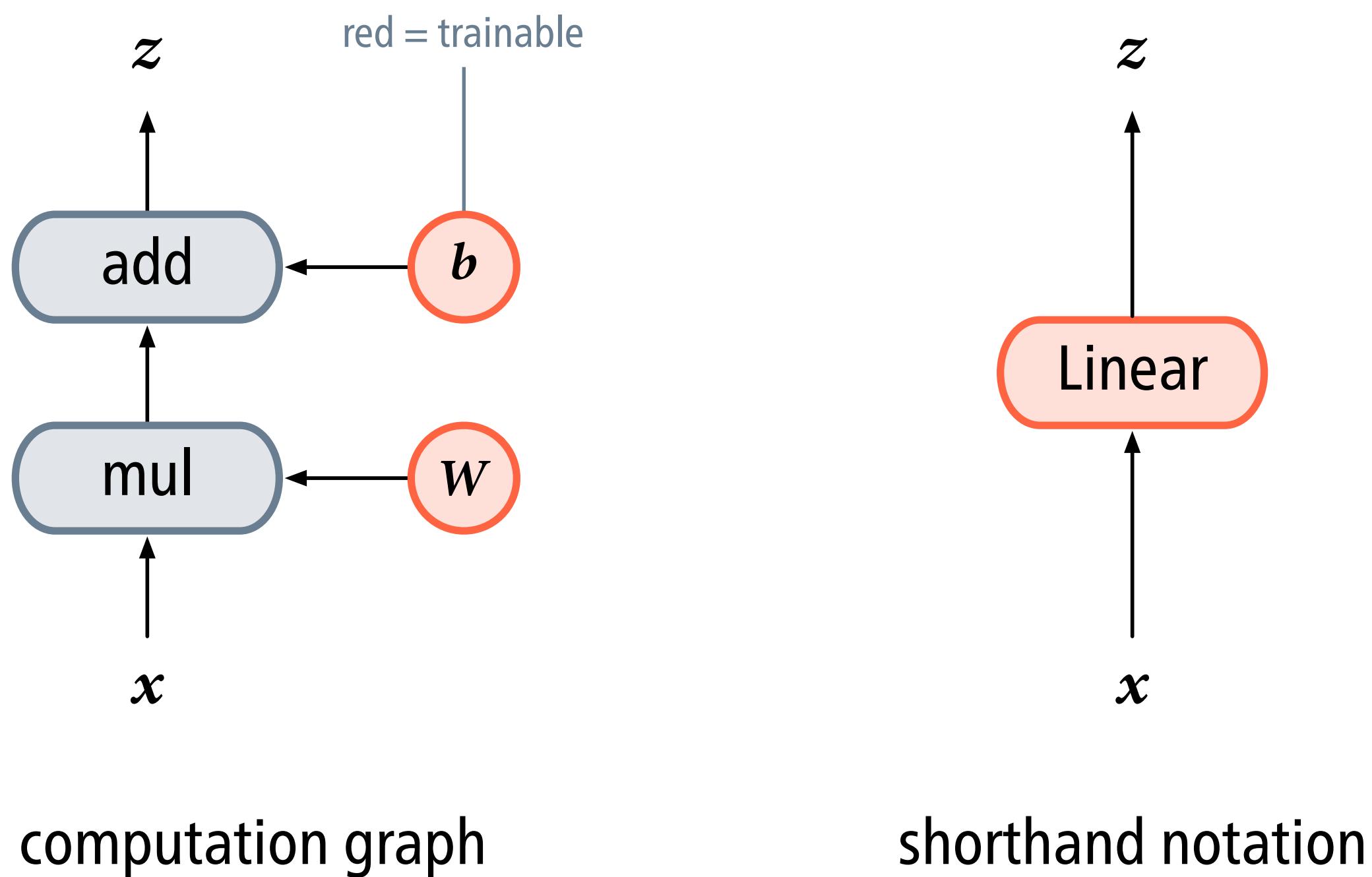
Handwritten digit recognition

5 0 5 9 7 7
6 8 0 6 3 6
2 7 1 5 8 3

Input: an image of a digit, represented as a 784-dimensional vector of greyscale values.

Predict: the digit depicted in the image

Graphical notation



Linear models in PyTorch

```
>>> import torch

>>> # Create a linear model
>>> model = torch.nn.Linear(784, 10)

>>> # Inspect the shapes of the model parameters
>>> [p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]

>>> # Feed random data and inspect the shape of the output
>>> model.forward(torch.rand(784)).shape
torch.Size([10])
```

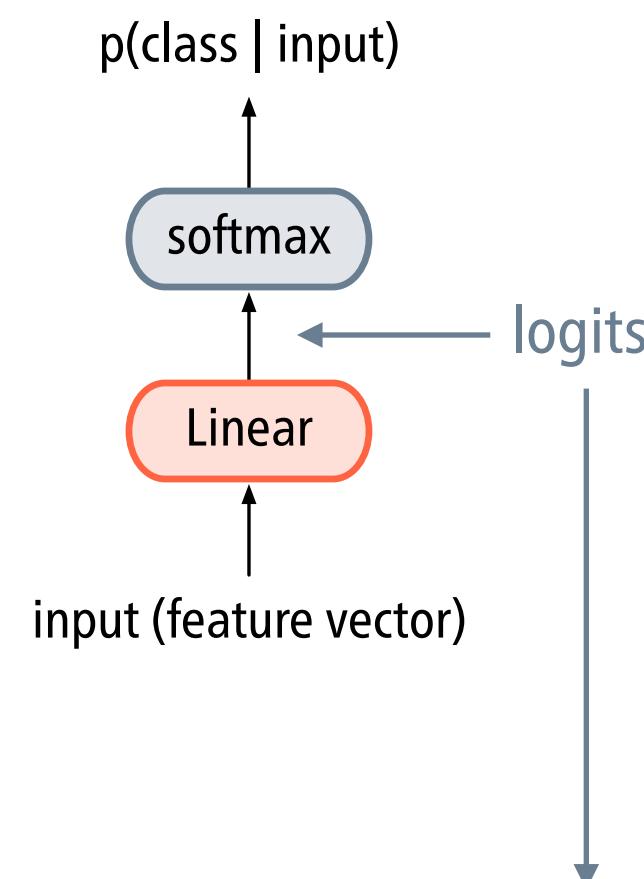
The softmax function

- We can convert the scores into a probability distribution $p(k | x)$ over the classes by sending them through the **softmax function**:

$$\text{softmax}(z)[k] = \frac{\exp(z[k])}{\sum_i \exp(z[i])}$$

- This normalises the scores to the interval $[0, 1]$ but does not affect the relative ordering of the scores.
- In this context, the unnormalised (raw) scores are called **logits**.

Linear layer + softmax function



$$p(k \mid \mathbf{x}) = \text{softmax}(\mathbf{x}\mathbf{W} + \mathbf{b})$$

Training a linear model

- We present the model with training samples of the form (\mathbf{x}, y) where \mathbf{x} is a feature vector and y is the gold-standard class.
- The output of the model is a vector of conditional probabilities $p(k | \mathbf{x})$ where k ranges over the possible classes.
- We want to train the model so as to maximise the likelihood of the training data under this probability distribution.

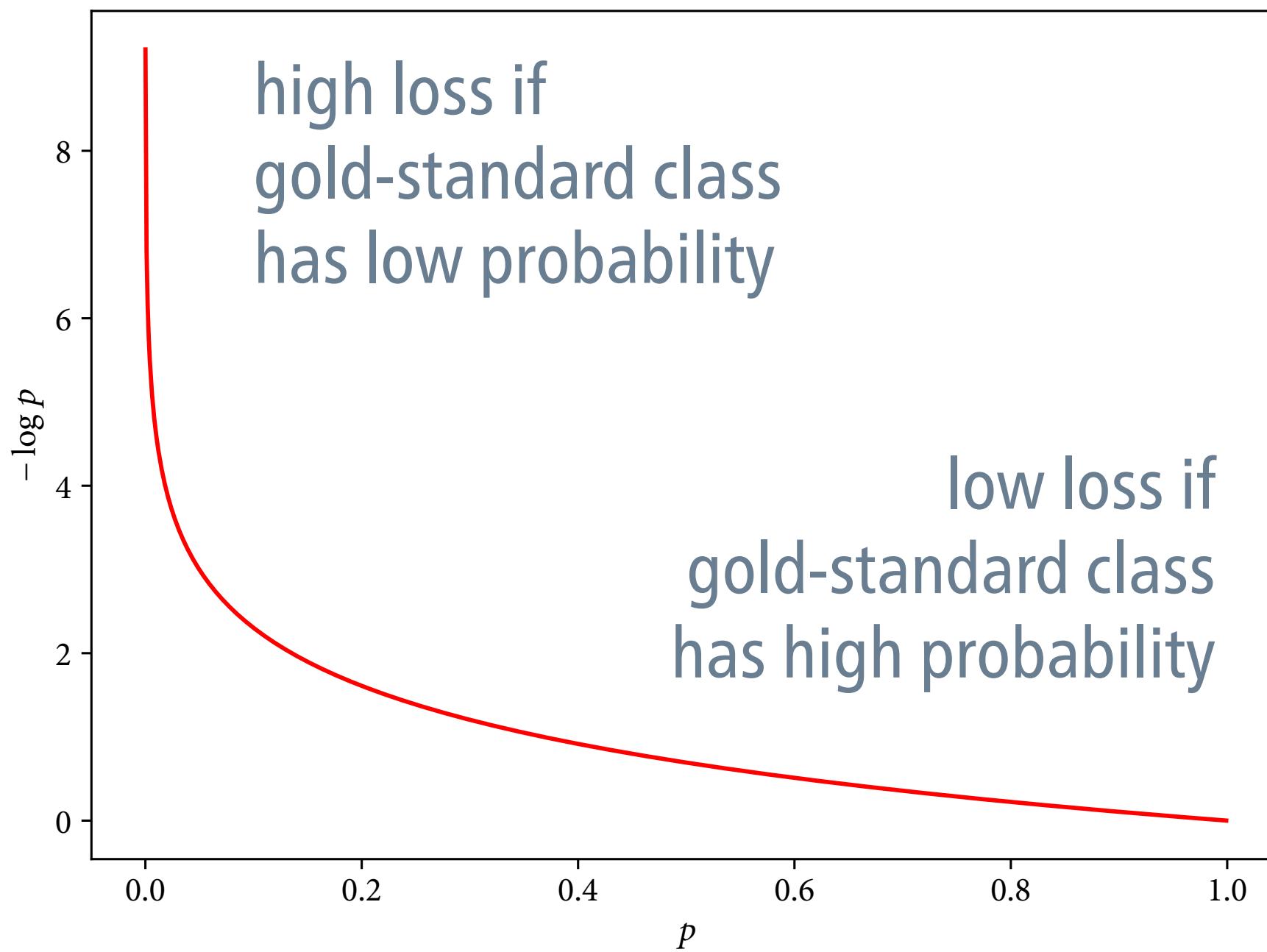
Cross-entropy loss

- Instead of maximising the likelihood of the training data, we minimise the model's **cross-entropy loss**.
- The cross-entropy loss for a specific sample (\mathbf{x}, y) is the negative log probability of the gold-standard class y , in our case:

$$L(\theta) = -\log \text{softmax}(\mathbf{x}W + \mathbf{b})[y]$$

all trainable
parameters

Cross-entropy loss



Gradient descent

"Follow the gradient into valleys of low error."

- **Step 0:** Start with random values for the parameters θ .
- **Step 1:** Compute the gradient of the loss function for the current parameter settings, $\nabla L(\theta)$.
- **Step 2:** Update the parameters θ as follows: $\theta := \theta - \alpha \nabla L(\theta)$
The hyperparameter α is the learning rate.
- Repeat step 1–2 until the loss is sufficiently low.