Natural Language Processing

Linear neural networks

Marco Kuhlmann
Department of Computer and Information Science

LIN KOD| \[e This work is licensed under a
UNIVERSITY Creative Commons Attribution 4.0 International License.

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Price (thousands of dollars)

700

525

350

175

Linear regression with one variable

1000 2000 3000 4000
Living area (square feet)

5000

Price (thousands of dollars)

700

525

350

175

Linear regression with one variable

1000 2000 3000 4000
Living area (square feet)

5000

The linear model

Convention:

input vector (1-by-m) Input vectors

are row vectors

output
value

z=xw+Db bias

weight vector (m-by-1)

m = number of features (independent variables)

The linear model (multivariate version)

input vector (1-by-m)

output vector . bias vector
(1-by-n) z=xW+b (1-by-n)

weight matrix (m-by-n)

m = number of input features, n = number of output features

Linear classification

» We can think of z=xW + b as a vector of class-specific scores.

The higher the score z[k], the more likely x belongs to class k.

« We can use these scores for classification: We predict the input x
to belong to the highest-scoring class k.

» With linear models, we can only solve a rather restricted class of
classification problems (linearly separable).

Handwritten digit recognition

> 0 6
& ¢ O
Z 7 |

VAR S RN

7 3
3 b
¥ 3

Input: an image of a digit, represented as a
784-dimensional vector of greyscale values.

Predict: the digit depicted in the image

Graphical notation

z red = trainable z

380 ‘

-

X X

computation graph shorthand notation

Linear models in PyTorch

>>> 1mport torch

>>> # Create a linear model

>>> model = torch.nn.Linear(784, 10)

>>> # Inspect the shapes of the model parameters
>>> [p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]

>>> # Feed random data and inspect the shape of the output
>>> model.forward(torch.rand(784)).shape
torch.Size([101)

The softmax function

» We can convert the scores into a probability distribution p(k | x)

over the classes by sending them through the softmax function:

class index

| - exp(z[k])
softmax(z)[k] = > exp(z[i])

» This normalises the scores to the interval [0, 1] but does not

affect the relative ordering of the scores.

 In this context, the unnormalised (raw) scores are called logits.

Linear layer + softmax function

p(class | input)

T
(softmax)

| «—— logits

Linear

T

input (feature vector)

v

p(k| x) = softmax(xW + b)

Training a linear model

» We present the model with training samples of the form (x, y)

where x is a feature vector and y is the gold-standard class.

» 'The output of the model is a vector of conditional probabilities

p(k | x) where k ranges over the possible classes.

« We want to train the model so as to maximise the likelihood of
the training data under this probability distribution.

Cross-entropy loss

 Instead of maximising the likelihood of the training data, we

minimise the model’s cross-entropy loss.

» The cross-entropy loss for a specific sample (x, y) is the negative

log probability of the gold-standard class y, in our case:

L(0) = —logsoftmax(xW +b)|y]

all trainable
parameters

Cross-entropy loss

high loss if

gold-standard class
has low probability

low loss if
gold-standard class
has high probability

0.0

0.2

0.4

0.6 0.8 1.0

G rad | e nt desce nt “Follow the gradient into valleys of low error.”

» Step o: Start with random values for the parameters 0.

» Step 1: Compute the gradient of the loss function for the current
parameter settings, VL(0).

» Step 2: Update the parameters 0 as follows: 6:=0 — a VL(0)

The hyperparameter « is the learning rate.

» Repeat step 1—2 until the loss is sufficiently low.

