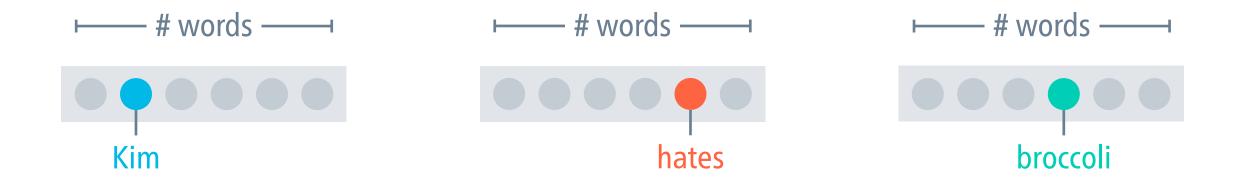
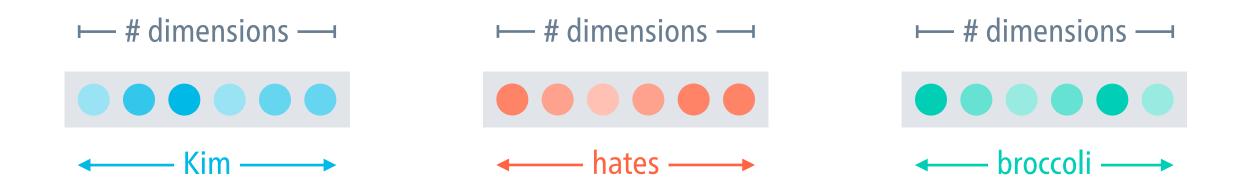
Natural Language Processing

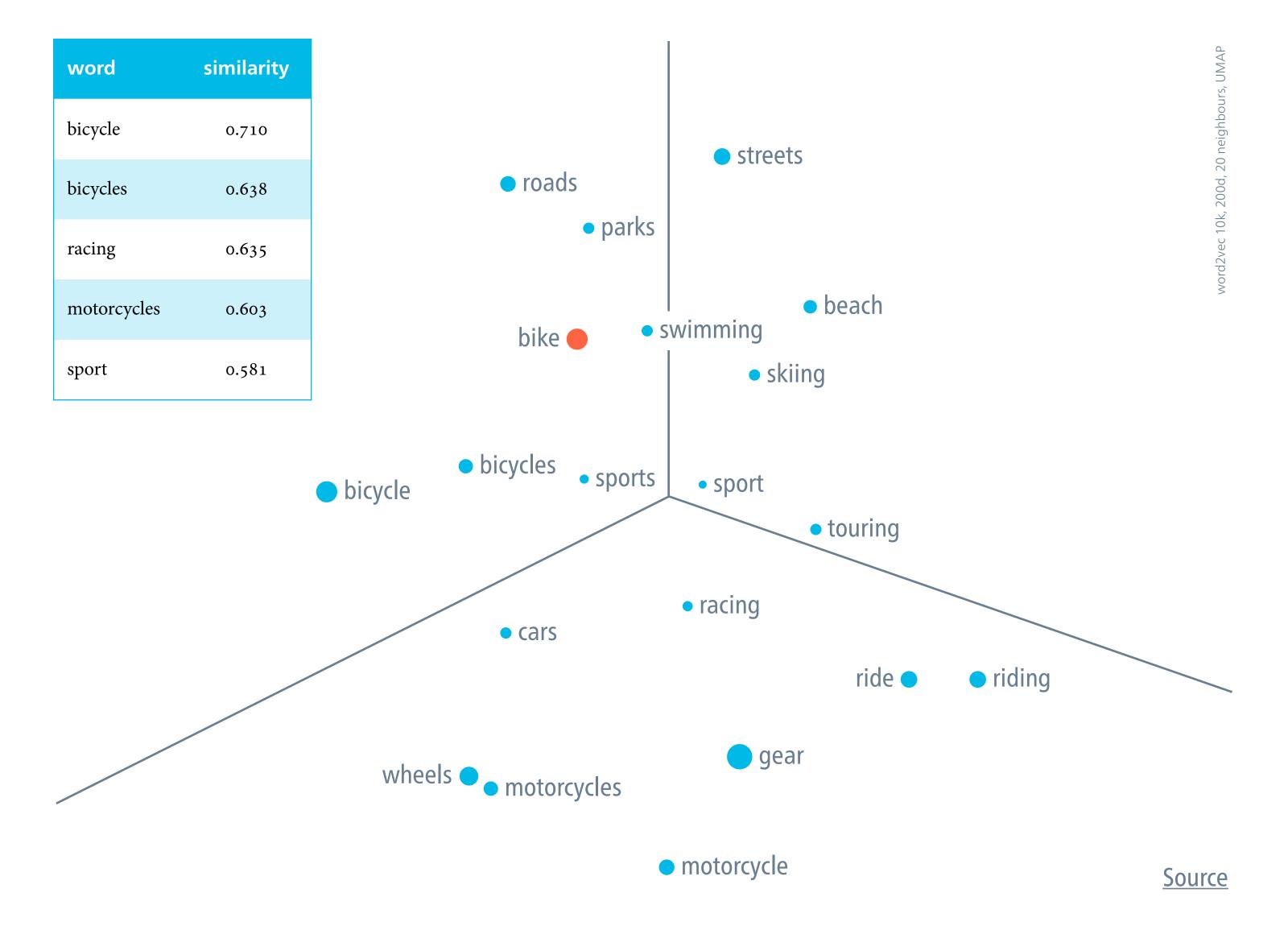
Word embeddings


Marco Kuhlmann

Department of Computer and Information Science

One-hot vectors


- To process words using neural networks, we need to represent them as vectors of numerical values.
- The classical way to do this is to use **one-hot vectors** vectors in which all components but one are zero.



Word embeddings

Compared to one-hot vectors, word embeddings

- are shorter but dense
- support a useful notion of similarity
- can be learned from data

You shall know a word by the company it keeps

What do the following sentences tell us about *Garrotxa*?

- Garrotxa is made from milk.
- Garrotxa pairs well with crusty country bread.
- *Garrotxa* is aged in caves to enhance mould development.

The distributional hypothesis

• The **distributional hypothesis** states that words with similar distributions have similar meanings.

with similar distributions = are used and occur in the same contexts

• This suggests that we can learn word representations from co-occurrence statistics.

similar co-occurrence distributions = similar meanings

		cheese	bread	goat	sheep
chee	se				
brea	ıd				
goa	t				
shee	ep				

as olives cheese or bread

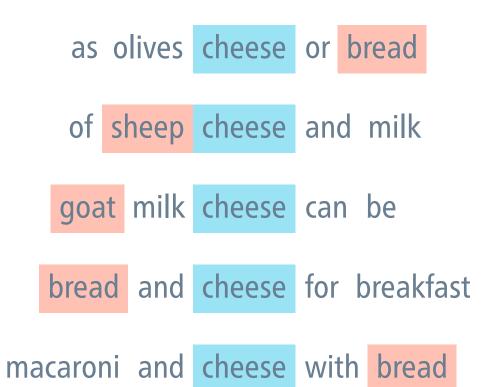
	cheese	bread	goat	sheep
cheese		1		
bread				
goat				
sheep				

as olives cheese or bread

of sheep cheese and milk

	cheese	bread	goat	sheep
cheese		1		1
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk
goat milk cheese can be


	cheese	bread	goat	sheep
cheese		1	1	1
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk

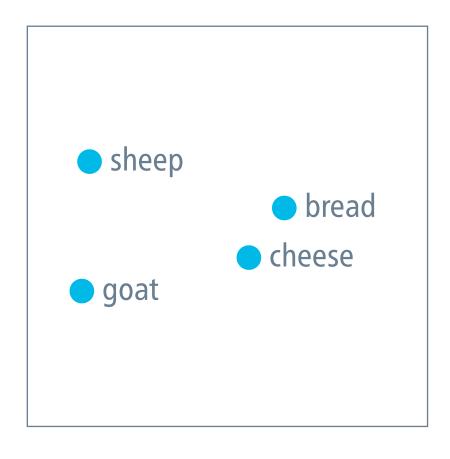
goat milk cheese can be

bread and cheese for breakfast

	cheese	bread	goat	sheep
cheese		2	1	1
bread				
goat				
sheep				

	cheese	bread	goat	sheep
cheese		3	1	1
bread				
goat				
sheep				

of sheep cheese and milk


goat milk cheese can be

bread and cheese for breakfast

macaroni and cheese with bread

	cheese	bread	goat	sheep	
cheese	14	7	5	1	word vector for cheese
bread	7	12	0	0	
goat	5	0	8	12	
sheep	1	0	12	2	

Vector similarity = meaning similarity

vector space (PCA)

	cheese	bread	goat	sheep
cheese	1.00	0.80	0.49	0.38
bread	0.80	1.00	0.17	0.04
goat	0.49	0.17	1.00	0.67
sheep	0.38	0.04	0.67	1.00

cosine similarities

$$\cos(x, y) = \frac{x^{\mathsf{T}} y}{\|x\| \|y\|}$$

Learning word embeddings

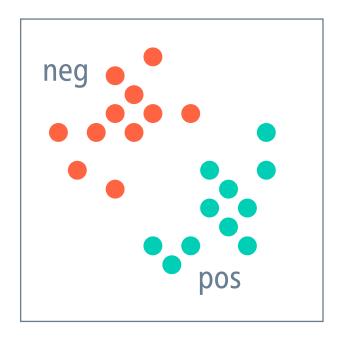
Count-based methods: Matrix factorisation

Minimise the difference between the co-occurrence matrix and an approximate reconstruction of it from word embeddings.

Prediction-based methods: Neural networks

Maximise the likelihood of a corpus under a probability model that is conditioned on the word embeddings.

Two different perspectives on word embeddings


Count-based approach

similar embeddings \Rightarrow the corresponding words have similar distributions

Prediction-based approach

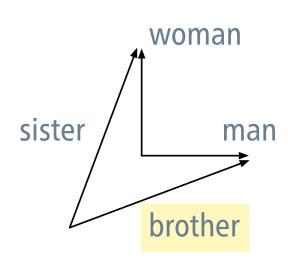
similar embeddings \Rightarrow the corresponding words behave similarly in learning tasks

Evaluation of word embeddings

- visualisation of the embedding space
 - Requires dimensionality reduction (PCA, t-SNE, UMAP)
- computing relative similarities

cosine similarity, Euclidean distance

similarity benchmarks


Example: odd one out – breakfast lunch dinner <u>surgery</u>

analogy benchmarks

Example: woman is to man as sister is to?

pizza sushi falafel

jazz rock funk laptop touchpad

