

Tokenisation fairness

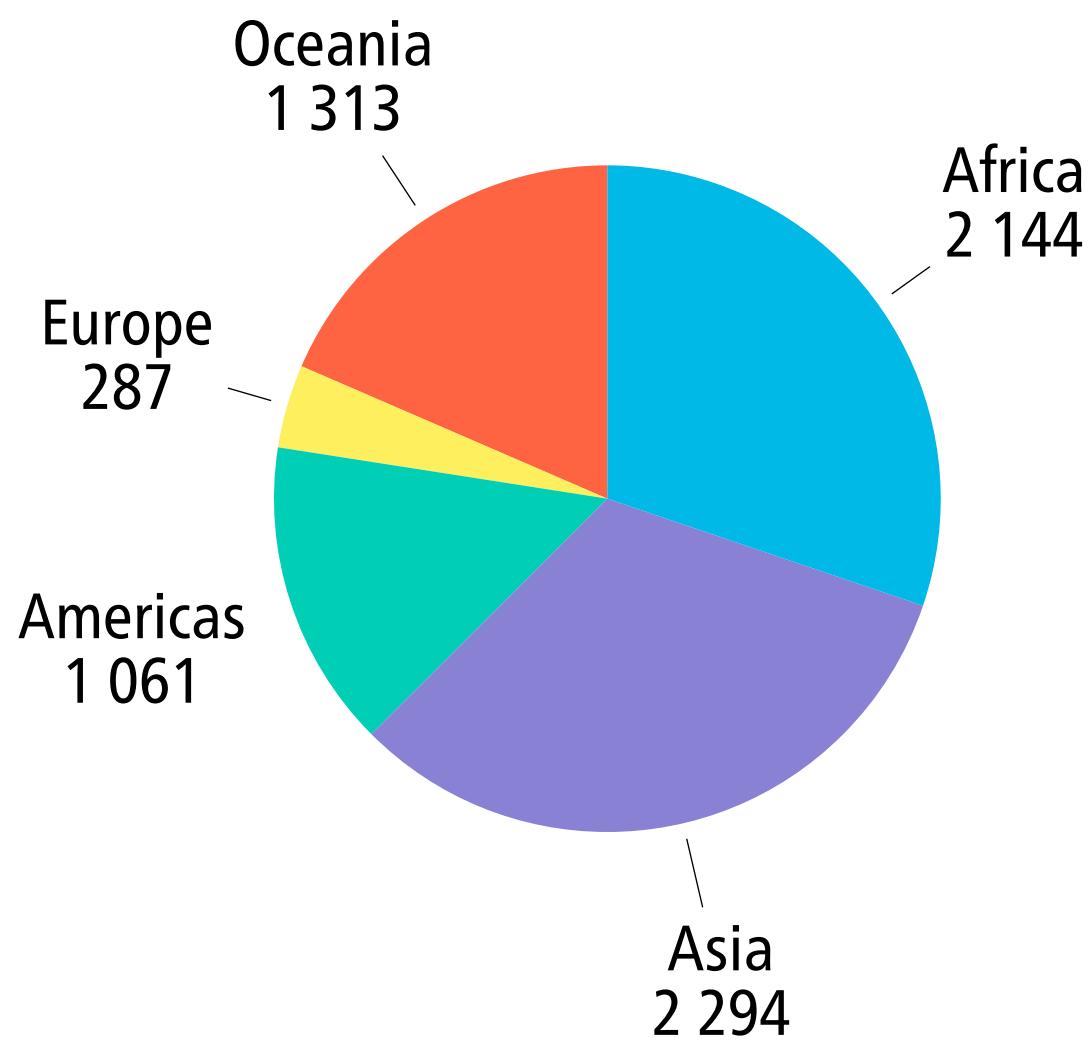
Marco Kuhlmann

Department of Computer and Information Science

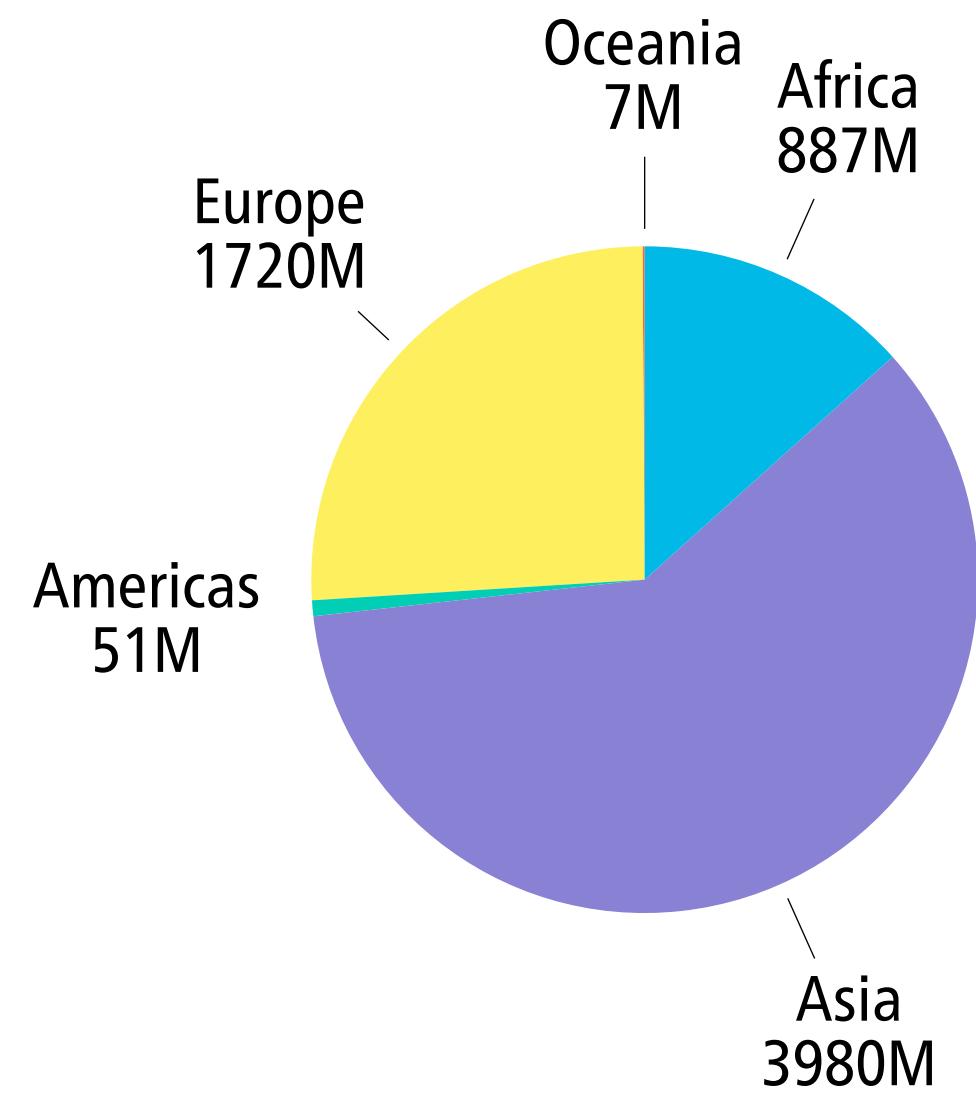
Fairness in AI

- **Fairness** in AI concerns whether model behaviours or outcomes systematically advantage or disadvantage certain users or groups.
gender, ethnicity, socioeconomic status, language, ...
- Bias can enter AI systems at multiple stages, making fairness a system-level property rather than a single fix.
data collection, model architecture, optimisation objectives, deployment
- Fairness is contextual and normative. It requires explicit choices rather than a one-size-fits-all technical definition.

Languages of the world



Languages by region of origin



Population by region of origin

Data taken from [Ethnologue](#)

Tokenisation premiums

Select language: English

Sentence:

These websites have gotten a lot of attention, especially in the education setting.

15 tokens, 0% characters mapped to the UNK token:

These websites have gotten a lot of attention, especially in the education setting.

Token IDs:

96731333561717454264276331566661154233042796873637613

Select language: Swedish

Sentence:

Dessa webbplatser har fått mycket uppmärksamhet, särskilt inom utbildningsområdet.

29 tokens, 0% characters mapped to the UNK token:

Dessa webbplatser har fått mycket uppmärksamhet, särskilt inom utbildningsområdet.

Token IDs:

352657735666543439805496039705568380861709529814304927471412211274143044991
303630431687916146539569316980211984213

In GPT-4, the tokenisation length for Swedish is 1.58 times that of English.

[Petrov et al. \(2023\)](#)

Tokenisation premiums

Select language: **English** ▾

Sentence:

These websites have gotten a lot of attention, especially in the education setting.

15 tokens, 0% characters mapped to the UNK token:

These websites have gotten a lot of attention, especially in the education setting.

Token IDs:

47119293423789125712562863241125922872623707463413

Select language: **Shan**

Sentence:

၏။ သို့။ ထို့။ အဲ။ လို့။ ဂျု့။ လွှင်။ သူ၏ အား လုံးတ်။ အမ်။ ဂ
မ်။ အမ်းတ်။ အား လုံးတ်။ တို့။ အိုး။ ဂေါ်။ အိုး။ တ်။ ပေါ်။ ပို့။ ပို့။ ပုံ။ ယုံ။ ယုံ။ ။

276 tokens, 0% characters mapped to the UNK token

Token IDs:

15722225115722211315722224315722211815722423115722225215722395157224228157224
231157223116157222255157222108157222251157222118157222116157223120157224228157
22423128053222250157224228157224230157224223157222243157222118157224231157222
250157222121157222226157222118157224230157222252157222108157223120157222118157
223116157224224157222118157222238157222226157222118157222116157223120157222247
15722211815722323228053223113157222247157222118157224230157223120157222247157
22211815722223815722422615722423128053222238157222106157224230157223120157224
22415722211815722211615722311315722395157223120157222118157223116157222238157
22211815722211615722223815722422715722222615722211815722422915722224315722395
157224228157222116157222243157222255157222226157222118157224229157223118157224
225157224229157222248157222251157222118157224231157223233

For Shan, the factor is 15.05.

“Tokenisation premium” relative to English ([Petrov et al., 2023](#)) – [Link](#)

Language	GPT-4	GPT-2	BLOOM
Spanish	1.55	1.99	1.21
Swedish	1.58	1.95	1.65
German	1.58	2.14	1.68
Chinese (Simplified)	1.91	3.21	0.95
Icelandic	2.15	2.43	1.99
Standard Arabic	3.04	4.40	1.14
Hindi	4.79	7.46	1.28
Shan	15.05	18.76	12.06

Tokenisation (un)fairness

[Petrov et al. \(2023\)](#)

- **Higher latency:** Users of disadvantaged languages have to wait longer for the same content to be processed.
- **Higher cost:** Commercial LLM services charge per token. Users of disadvantaged languages pay more for the same task.
GPT-5.2: \$1.75/1M tokens (input), \$14/1M tokens (output)
- **Lower quality:** Current models have a fixed-size context window. Users of disadvantaged languages get less quality.

Unfairness due to variable-length encoding

- BPE tokenisation is usually applied to byte sequences coming from the UTF-8 encoding of Unicode characters.
- UTF-8 uses a variable-length encoding, where a Unicode character is represented by one or several bytes.
- This encoding scheme penalises languages written in scripts with high codepoints in the Unicode standard.

English → 1 byte per character, Shan → 3 bytes per character

Block-structured encoding

[Land and Arnett \(2025\)](#)

Unicode codepoints:

a

Ω

书

😊

UTF-8 bytes:

61

CE A9

E4 B9 A6

F0 9F A4 97

The proposed SCRIPT encoding maps each codepoint to a block token and an index token:

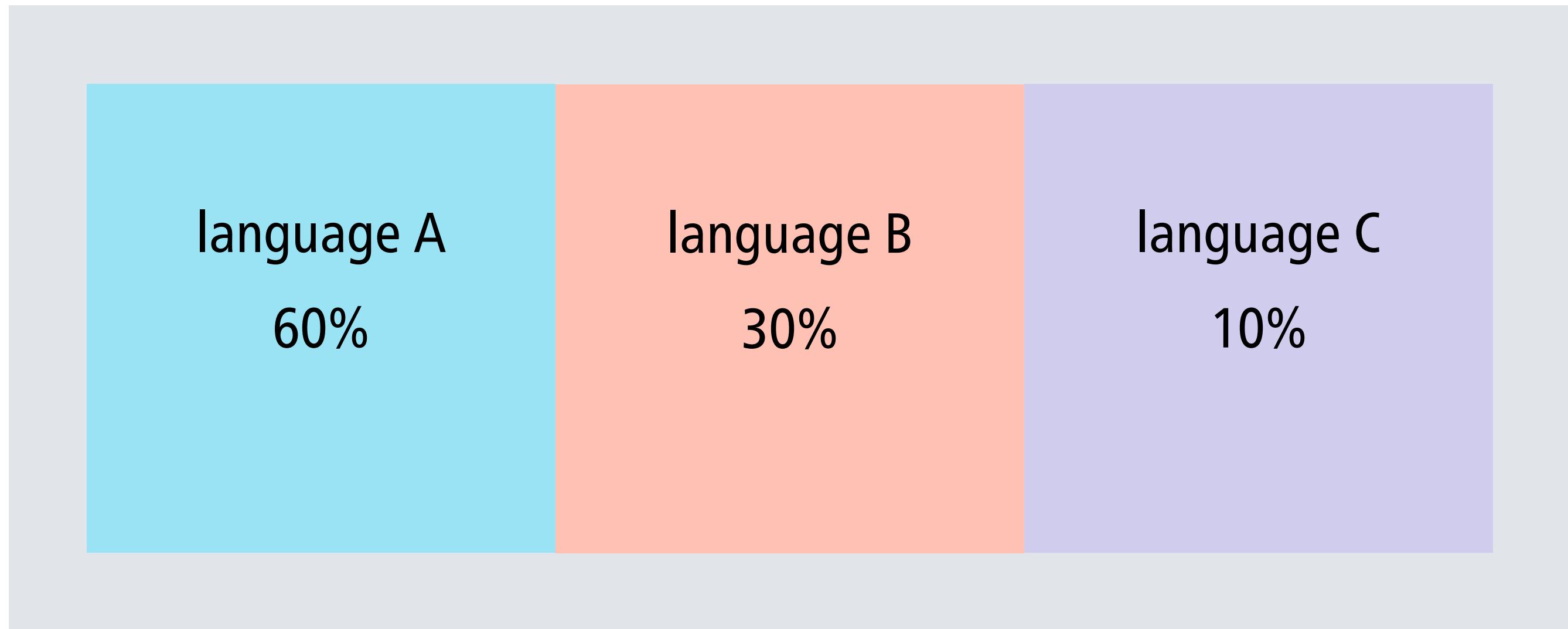
L 7

EL 45

HS 912

EH 429

BPE penalises low-frequency languages



training corpus

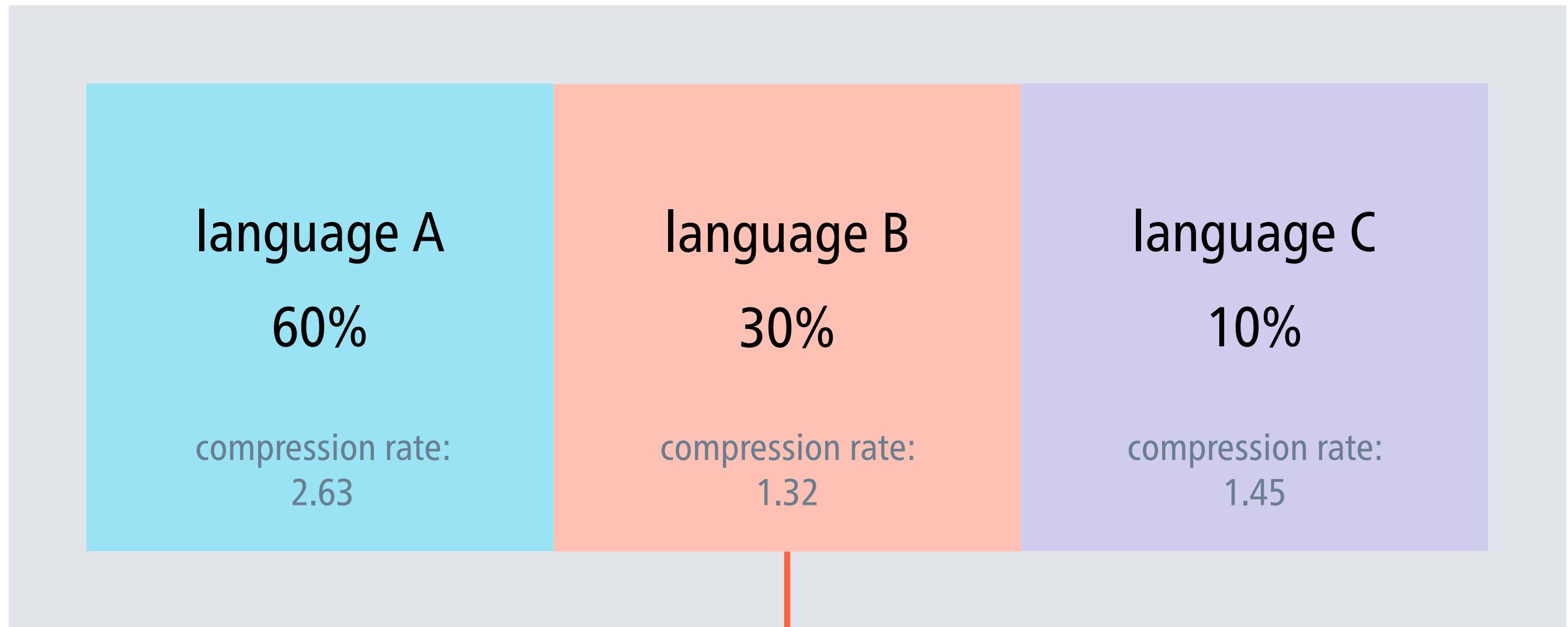
[token 1] [token 2] → [token 3]

Parity-aware BPE

[Foroutan et al. \(2025\)](#)

- BPE learns merge rules based on the most frequent pairs in the complete corpus, implicitly favoring well-represented languages.
- **Parity-aware BPE** adds the merge rule that most improves the language with the currently worst tokenisation efficiency.
- Concretely, we find the next merge rule in the sub-corpus for the language with the currently lowest **compression rate**.
- This rule is then applied to the full corpus, as in standard BPE.

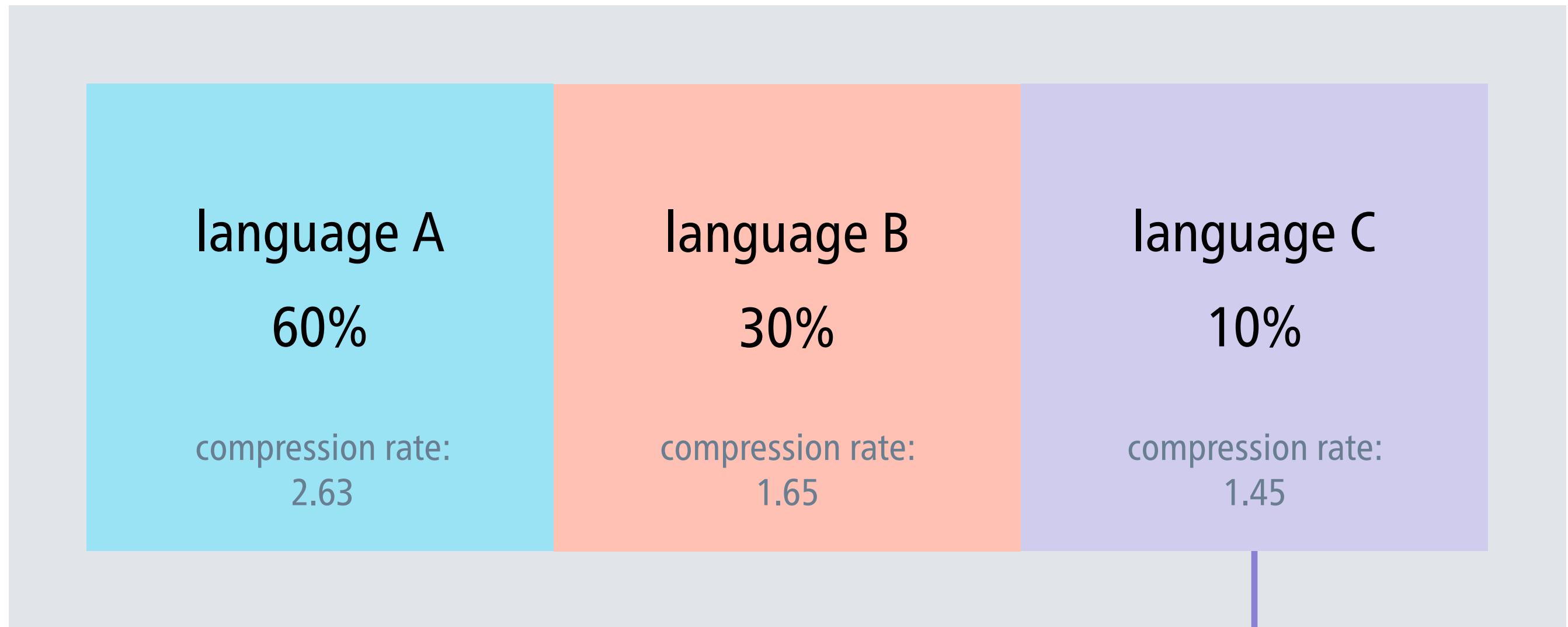
Parity-aware BPE



training corpus

[token 1] [token 2] → [token 3]

Parity-aware BPE



training corpus

[token 1] [token 2] → [token 3]

Compression rate

[Foroutan et al. \(2025\)](#)

- Text can be decomposed at many granularities. Here we assume that tokeniser inputs are represented as **byte-strings**.
- The **compression rate** of a byte-string b is the ratio between the lengths of the original and the tokenised version of b :

$$\text{CR}(b) = \frac{|b|}{|\text{tokenize}(b)|}$$

- We are generally interested in a tokeniser's average compression rate, which can be estimated on a text corpus.

Summary

- Tokenisers encode explicit or implicit decisions about which languages get technology that is fast, cheap, and expressive.
- Fairness metrics are not just post-hoc evaluations, but can be optimised during training.
- While there are several proposals for how to address tokenisation unfairness, the problem is not “solved”.
new trade-offs; many layers of linguistic inequality