
Unit 1

Lecture 1.1

1. What is the datatype of token ID vectors?

• list[str]

Incorrect. While token IDs may conceptually represent strings in some cases
(e.g., when they represent words), the datatype of token ID vectors is not a list
of strings. Token IDs are numerical representations.

• Tensor[int]

Correct. Token ID vectors are represented as integer tensors, where each integer
corresponds to a unique token in the vocabulary.

• Tensor[float]

Incorrect. Token ID vectors are integers, not floating-point numbers. Floating-
point tensors are typically used for embeddings, not IDs.

2. Whitespace tokenisation can suffer from undersegmentation. What is an example
of oversegmentation?

• co-writer/director → co - writer / director

Correct. Oversegmentation occurs when a single meaningful token is split into
multiple, less meaningful tokens. In this case, co-writer/director is split
unnecessarily into five tokens, including the less meaningful co, -, writer.

• co-writer/director → co-writer / director

Incorrect. This is an example of reasonable segmentation, where tokens are split
at logical boundaries without breaking meaning.

• co-writer/director → co-writer/director

Incorrect. This is an example of no segmentation at all, which may not capture
subunits for downstream tasks.

3. Suppose we apply the regex-based tokeniser to the negative review. Which tokens
would we get? (Separate tokens are enclosed in square brackets.)

• [relentless] [gaiety] [of] [the] [1920's] [,]

Incorrect. This segmentation keeps ”1920’s” as a single token, which does not
match the regex-based tokeniser behavior of splitting contractions and posses-
sive markers.

2



• [relentless] [gaiety] [of] [the] [1920] ['s] [,]

Correct. The regex-based tokeniser splits possessive markers (e.g., Jackson's)
into separate tokens, which matches this output.

• [relentless] [gaiety] [of] [the] [1920] ['] [s] [,]

Incorrect. This segmentation splits 's into two tokens, which does not match
the regex shown in the slide.

4. What is an example of lemmatisation?

• centers → center

Correct. Lemmatisation reduces words to their base or dictionary form (lemma).
Here, centers is reduced to center.

• center → centre

Incorrect. This is not lemmatisation but a change of spelling (e.g., American to
British English).

• center → centers

Incorrect. This represents inflection (e.g., singular to plural), not lemmatisation.

5. In the graph for the Heaps’ law experiment, after how many tokens, approximately,
had the vocabulary reached half of its final size?

• 250,000

Correct. At 250,000 tokens, the vocabulary size is slightly more than 15,000
tokens, whereas the final size is slightly more than 30,000 tokens.

• 500,000

Incorrect. At 500,000 tokens, the vocabulary size is approximately 22,500 tokens,
more than half the final size of slightly more than 30,000 tokens.

• 1,000,000

Incorrect. At 1,000,000 tokens, the vocabulary size is approximately 28,000
tokens, quite close to the final size of slightly more than 30,000 tokens.

3



Lecture 1.2

1. In BPE, how many merge operations give us a vocabulary of 1,024 tokens?

• 256

Incorrect. With only 256 merge operations, the resulting vocabulary size would
be 256 + 256 = 512 tokens.

• 768

Correct. If we start with a base vocabulary of size 256 (all possible single bytes),
adding 768 merges gives us a total of 1,024 tokens. Each merge adds one token
to the vocabulary.

• 1,024

Incorrect. 1,024 merge operations would create a vocabulary with 1,280 tokens
when starting from a base vocabulary of 256.

2. Unicode codepoints between 2048 and 65535 need three bytes in UTF-8. How
many bytes are in the UTF-8 encoding of the Unicode string oó�, where the last
letter is the letter O in Devanagari?

• 4

Incorrect.

• 5

Incorrect.

• 6

Correct. The UTF-8 encoding is as follows: o → 1 byte (7-bit ASCII), ó → 2 bytes
(cf. the example from Icelandic), � → 3 bytes (cf. the Unicode chart, where this
letter has codepoint 0913, corresponding to 2323). Adding these gives a total of
6 bytes.

3. Suppose we apply the BPE algorithm to the string aaaa and do at most four merges.
What is the second merge rule extracted by the algorithm?

• a + a → [aa]

Incorrect. This is the first merge rule extracted by the algorithm, not the second.

• [aa] + a → [aaa]

Incorrect. The second merge rule is not applied to as string with occurrences of
both [aa] and a but to the result of the first merge rule, which is [aa][aa].

4



• [aa] + [aa] → [aaaa]

Correct. After the first merge rule, the string becomes [aa][aa]. The second
merge rule is then [aa] + [aa] → [aaaa].

4. Suppose we apply the BPE algorithm to a very long English text and do a lot of
merge rules. Which token would we expect not to see in our final vocabulary?

• [eaux]

Correct. This should be a rare token even in very long English texts, especially
compared to the other two.

• [tion]

Incorrect. This token is a very frequent subword in English (e.g., action, nation)
and is likely to appear in the final vocabulary after many merges.

• [thes]

Incorrect. This token may not be as frequent as [tion] but appears in several
English words (e.g., hypothesis, anaesthesia) and should be much more likely
than [eaux].

5. How many tokens are in the string Linköping University, according to the
o200k_base tokeniser?

• 2

Incorrect.

• 3

Incorrect.

• 4

Correct. According to Tiktokenizer, the o200k_base tokeniser tokenises this
string as Link, ö, ping, and University.

5



Lecture 1.3

1. Which of the following best describes tokenisation fairness?

• Whether different languages are tokenised with similar efficiency

Correct. Tokenisation fairness refers to the equitable treatment of different
languages in terms of how efficiently they are tokenised, which can impact
model performance across languages.

• Whether a model produces unbiased outputs across languages

Incorrect. This describes model fairness more broadly, not specifically tokenisa-
tion fairness.

• Whether all languages are equally frequent in the tokeniser training data

Incorrect. While data balance can affect tokenisation fairness, it is not the
definition of tokenisation fairness itself.

2. What is a tokenisation premium?

• The factor by which a tokeniser requires more tokens to represent one language
than another

Correct. A tokenisation premium quantifies how much more (or less) efficient a
tokeniser is for one language compared to another, measured in terms of the
number of tokens needed for the same text.

• The factor by which a tokeniser requires more compute for one language than
for another

Incorrect. This describes computational efficiency, not tokenisation premium.

• The factor by which a tokeniser requires more training data for one language
than for another

Incorrect. This describes data requirements, not tokenisation premium.

3. Why does standard BPE tend to disadvantage low-resource languages in multilin-
gual settings?

• Because merge rules are learned from the most frequent token pairs in the entire
corpus

Correct. In multilingual settings, BPE learns merge rules based on the most fre-
quent token pairs across all languages. Low-resource languages may have fewer
occurrences of their unique token pairs, leading to less optimal tokenisation for
those languages.

6



• Because low-resource languages require more byte pairs than high-resource
languages

Incorrect. The number of byte pairs required is not inherently higher for low-
resource languages; rather, it is the frequency of token pairs that affects the
learned merges.

• Because low-resource languages have a higher compression rate than high-
resource languages

Incorrect. Compression rate is not directly related to the disadvantage faced by
low-resource languages in BPE tokenisation.

4. In the lecture, “compression rate” is defined as:

• The number of bytes divided by the number of tokens

Correct. Compression rate is defined as the ratio of the number of bytes to
the number of tokens, indicating how efficiently text is represented in terms of
tokenisation.

• The number of tokens divided by the number of characters

Incorrect.

• The number of bytes divided by the number of characters

Incorrect.

5. Which of the following statements best reflects the general lesson of the lecture on
tokenisation fairness?

• Tokenisation is one layer of a broader system of linguistic inequality, and im-
proving it involves normative trade-offs

Correct. Tokenisation fairness is part of a larger context of linguistic inequality,
and addressing it requires considering various trade-offs and ethical considera-
tions.

• Unfair tokenisation mainly reflects data imbalance and will largely disappear as
multilingual training corpora grow

Incorrect. While data imbalance can contribute to unfair tokenisation, it is not
the sole factor, and unfairness may persist even with larger corpora.

• Fair tokenisation can be achieved by optimising fairness metrics (such as com-
pression rate) during training

Incorrect. While optimising fairness metrics can help, it does not guarantee fair
tokenisation, as other factors also play a role.

7



Lecture 1.4

1. We initialise an embedding layer e as torch.nn.Embedding(15000, 100). What
is the number of trainable parameters in e?
• 15,000

Incorrect. This value corresponds to the number of unique embeddings, not the
total number of parameters in the layer.

• 15,100
Incorrect. This does not match the formula for calculating the total number of
parameters in an embedding layer.

• 1,500,000
Correct. The number of trainable parameters in the embedding layer is given
by the formula: number of embeddings × embedding size. Here, 15000 × 100 =1500000.

2. We build a continuous bag-of-words classifier using the embedding layer e from
the previous question and a softmax classifier. Assuming five classes and no bias,
what is the correct formula for the number of trainable parameters of the classifier?

• number of parameters in e + 105
Incorrect. Adding 105 parameters would only account for a softmax classi-
fier with 5 classes and 21 inputs, which does not match the 100-dimensional
embeddings.

• number of parameters in e + 500
Correct. For a softmax classifier with 100 inputs and 5 output classes, the weight
matrix contains 100 × 5 = 500 parameters.

• number of parameters in e + 7500
Incorrect.

3. True or false? “The embeddings learned for the words university and school are
similar.”
• True

Incorrect. While embeddings for related words can be similar, their similarity
depends on the specific training task.

• False
Incorrect. This assumption cannot always be made, as similarity depends on
the task.

8



• Depends on the training task

Correct. The similarity between embeddings for university and school depends
on the nature of the training task and dataset. For example, in a task focusing
on education, they may be similar, but in a task unrelated to education, they
may not.

4. We train a continuous bag-of-word classifier on the task of predicting the category
of a product as either “book” or “bike” based on a product description. Which
of the following word pairs can be expected to have embeddings with low cosine
similarities?

• pages, gear

Correct. The words pages and gear belong to very different semantic categories
(“book” and “bike”, respectively), so their embeddings are expected to have low
cosine similarity.

• pages, chapter

Incorrect. Both words are strongly related to the “book” category, so their
embeddings are likely to have high cosine similarity.

• gear, brake

Incorrect. Both words are strongly related to the “bike” category, so their em-
beddings are likely to have high cosine similarity.

5. Which of the following is an instance of “pre-training and fine-tuning”?

• initialise the embedding layer with random weights + train the network on a
prediction task

Incorrect. This describes standard training without any pre-training step.

• initialise the embedding layer with trained weights + train the full network on a
prediction task

Correct. Pre-training refers to using weights trained on a related task or large cor-
pus, and fine-tuning involves further training on a specific task. This description
matches that process.

• initialise the embedding layer with trained weights + train the other parts on a
prediction task

Incorrect. While this involves pre-trained embeddings, freezing the embedding
layer and training only other parts of the network does not fully qualify as
fine-tuning.

9



Lecture 1.5

1. Say that we have a vocabulary of half a million English words, and suppose that the
word parsnip has the number 350,740. How long is the one-hot vector for parsnip?

• 1

Incorrect. The value 1 would be the length of the vector if there were only one
word in the vocabulary, but this is not the case here.

• 350,740

Incorrect. This value represents the index of the word parsnip in the vocabulary,
not the length of the one-hot vector.

• 500,000

Correct. In a one-hot representation, the length of the vector corresponds to
the size of the vocabulary. Since there are 500,000 words, the vector is 500,000
elements long.

2. What is a typical length for a word embedding?

• 30

Incorrect. A length of 30 would be too short for word embeddings to effectively
capture the complexity of semantic relationships.

• 300

Correct. A typical word embedding, such as those used in word2vec or GloVe,
often has a length of 300 dimensions, which provides a good balance between
representational power and computational efficiency.

• 30,000

Incorrect. This value is far too large for a word embedding, leading to unneces-
sary computational costs and potential overfitting.

3. What does it mean if two vectors have a cosine similarity of 1?

• The angle between them is 0 degrees.

Correct. A cosine similarity of 1 indicates that the vectors are perfectly aligned,
meaning the angle between them is 0 degrees.

• The angle between them is 90 degrees.

Incorrect. An angle of 90 degrees corresponds to a cosine similarity of 0, indi-
cating that the vectors are orthogonal (no similarity).

10



• The angle between them is 180 degrees.

Incorrect. An angle of 180 degrees corresponds to a cosine similarity of −1,
indicating that the vectors are perfectly opposite.

4. The Distributional Hypothesis is often summarised in the slogan “You shall know
a word by the company it keeps”. What does the word “company” refer to?

• Words that co-occur with the other word

Correct. The “company” refers to the words that frequently co-occur in similar
contexts. This is the basis of the Distributional Hypothesis, which suggests that
the meaning of a word can be inferred from its context.

• Words with similar word embeddings

Incorrect. While word embeddings can encode relationships between words,
the company specifically refers to co-occurring words in context.

• Words with similar meanings

Incorrect. Words with similar meanings often have similar co-occurrences, but
the company directly refers to the surrounding words, not their meanings.

5. Which of the following is not used to evaluate word embeddings?

• cross-entropy loss

Correct. Cross-entropy loss is used during training to optimise word embed-
dings, but it is not a direct evaluation metric for the quality of embeddings.

• odd-one-out test

Incorrect. The odd-one-out test evaluates embeddings by determining which
word does not fit in a group, assessing semantic relationships.

• analogy benchmarks

Incorrect. Analogy benchmarks, such as “king −man + woman = queen”, are
commonly used to evaluate how well embeddings capture relationships between
words.

11



Lecture 1.6

1. The standard skip-gram model (without negative sampling) is a 𝑘-class classifica-
tion problem. What would be a realistic value for 𝑘?
• 2

Incorrect. 𝑘 = 2 would only apply to binary classification, not a multi-class task
like the standard skip-gram model, where the model predicts context words
from a large vocabulary.

• 2,000

Incorrect. This value is not realistic for the full vocabulary size in most corpora.

• 20,000

Correct. In the standard skip-gram model, 𝑘 corresponds to the size of the
vocabulary, which is typically tens of thousands.

2. Why is the task of predicting the other word in a skip-gram an interesting pre-
training task?

• Predicting the other word forces the model to learn co-occurrence statistics

Correct. Predicting context words requires the model to capture co-occurrence
patterns, which are key to learning meaningful word embeddings.

• Predicting the other word can be done efficiently

Incorrect. While efficiency is desirable, it is not the primary reason the task is
interesting for pre-training.

• Predicting the other word is a relatively simple task that can be learned with
little data

Incorrect. Skip-gram models require large amounts of data to effectively learn
word representations, as they rely on co-occurrence patterns across diverse
contexts.

3. In the skip-gram model, we distinguish between a target word 𝑤 and a context
word 𝑐. When would we want 𝑃(𝑐 | 𝑤) to be high?

• The word vectors for 𝑤 and 𝑐 have a high cosine similarity

Correct. We want to tune the word vectors in such a way that 𝑃(𝑐 | 𝑤) is high,
and this requires them to have high cosine similarity.

• The word vectors for 𝑤 and 𝑐 have a low cosine similarity

Incorrect.

12



• The two words 𝑤 and 𝑐 are frequent

Incorrect. Word frequency does not directly determine 𝑃(𝑐|𝑤). Instead, the
co-occurrence relationship between 𝑤 and 𝑐matters.

4. What is the basic idea behind the “skip-gram with negative sampling” model?

• approximate the probabilities 𝑃(𝑐 | 𝑤) using a simpler prediction task

Correct. Negative sampling approximates 𝑃(𝑐 | 𝑤) by replacing the computa-
tionally expensive softmax with a binary classification task: distinguishing true
(positive) context words from randomly sampled (negative) ones.

• decompose the softmax into a tree-like structure of simpler computations

Incorrect. This describes hierarchical softmax, which is another method for
optimizing 𝑃(𝑐 | 𝑤), not negative sampling.

• replace the word embeddings with an efficient sampling process

Incorrect. Negative sampling retains word embeddings but uses an efficient
sampling-based approximation for training.

5. Which of the following is not used to speed up the “skip-gram with negative
sampling” model?

• randomly exclude stop words and other non-content words from the training
data

Correct. Excluding stop words is a common preprocessing step that can speed
up training by reducing unnecessary computations, but is not used specifically
in skip-gram with negative sampling.

• randomly discard tokens with a probability that grows with the token frequency

Incorrect. This is the subsampling technique implemented in skip-gram with
negative sampling, which helps speed up training by reducing the impact of
frequent words.

• randomly sample window sizes up to a maximum size with uniform probability

Incorrect. Rather than considering all window sizes up the maximum size, the
model samples these sizes at random to speed up the training.

13


