
This work is licensed under a  
Creative Commons Attribution 4.0 International License.

Attention

Marco Kuhlmann  
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/


Contextual embeddings

• Standard word embeddings map each word to a fixed vector. 

• In natural language, word meaning is not static, but depends on 
the surrounding words. 
Dogs may bark at strangers. Trees shed bark in winter. 

• Contextual embeddings assign word vectors dynamically, 
conditioned on context.
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Contextual embeddings
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ELMo – Embeddings from Language Models
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Contextual embeddings via attention

• In attention, each word vector 𝒉𝑖 is the weighted sum of all the 
word vectors 𝒉𝑗 computed at the previous layer: 

• The weights 𝛼𝑖𝑗 express how much the model should “attend to” 
the context vector 𝒉𝑗 at layer 𝓁 when forming 𝒉𝑖 at layer 𝓁+1. 

• The weights are proportional to the vector similarity between 𝒉𝑖 
and the context vectors, and are learned during training.
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A general characterisation of attention

• In general, attention can be described as a mapping from a 
query 𝒒 and a set of key–value pairs ⟨𝒌𝑖, 𝒗𝑖⟩ to an output. 

• The output is the weighted sum of the 𝒗𝑖, where the weight of 
each 𝒗𝑖 is given by the attention score between 𝒒 and 𝒌𝑖:

Vaswani et al. (2017)
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Attention in the Transformer
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Scaled dot-product attention in PyTorch

# Input: queries q, keys k, values v 
# shape of q, k, v: [num_words, d] 

# Compute the attention scores (scaled dot product) 
scores = q @ k.transpose(-1, -2) / hidden_dim**0.5 
# shape of scores: [num_words, num_words] 

# Normalise the attention scores 
alphas = F.softmax(scores, dim=-1) 
# shape of alphas: [num_words, num_words] 

# The output is the alpha-weighted sum of the values 
result = alphas @ v 
# shape of result: [num_words, d]



Multi-head attention
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