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Attention is all you need

Recurrent neural networks implement a sequential model of

computation that processes sequences element-by-element.

In contrast, attention facilitates ¢

irect access to all elements,

independently of sequence lengt!

The Transformer is an encoder—

1.

decoder architecture that drops

recurrent neural networks and exclusively uses attention.

fixes information bottleneck problem:;

can be parallelised

Vaswani et al. (2017)



https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
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Example translation

MHA MHA MHA MHA
— 1 J 1 J | J |1 J
( Embed } ------- Embed }------- { Embed } ------- { Embed )

( MTA }
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|
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Multi-head attention in the encoder
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Multi-head attention in the encoder
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Multi-head attention in the decoder




Multi-head attention in the decoder

8 heads

( scaled dot-product attention )
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Cross-attention
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Position-wise feed-forward network

Parameters are shared across positions, but not across blocks.
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Normalise-and-add wrapper

(dropout)
residual
connection ( Norm )
o™ - .$- .-
‘ 512
input
gain bias
parameter parameter
!L ‘ 1 | x|
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layer
normalisation

Ba et al. (2016)



https://arxiv.org/abs/1607.06450

Further details

- Embeddings are augmented by position encodings.

approximate encoding of absolute positions

» Training the model uses several tricks related to batching,

masking, loss, and regularisation.

for details and PyTorch code, see the ‘Annotated Transformer’



http://nlp.seas.harvard.edu/2018/04/03/attention.html

Translation performance

BLEU FLOPs

GNMT + RL (Wu et al., 2016) 39.92 1.4 - 1020
ConvS2S (Gehring et al., 2017) 40.46 1.5 - 1020
MOoE (Shazeer et al., 2017) 40.56 1.2 - 1020
Transformer (big model) 41.80 2.4 - 109

BLEU score and training cost (FLOPs) on the English-to-French newstest2014 test data | Vaswani et al. (2017)
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