
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Scaling laws

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

Scaling laws in language modelling

• Scaling laws describe how model performance improves as we
increase key factors such as model size and training data size.

• Empirical results suggest that performance improvements obey a
power law: performance increases, but at a diminishing rate.
cf. Heap’s law

• Scaling laws can help developers answer many practically
relevant questions about resource allocation.

Computational cost

• e cost of language model training is a function of the number
of model parameters, 𝑃, and the number of training tokens, 𝑇.

• e standard unit for measuring computational cost is the
number of floating point operations (FLOPs).

• For the Transformer architecture, a useful approximation for the
computational cost 𝐶 is 𝐶 ≅ 6𝑃𝑇.

parameter

0.2978 0.3753

0.3981 0.0685

0.3516 0.6527

0.2536 0.7357

0.1999 0.4705

0.1573 0.3102

× =
token 1

token 2

0.2978 0.3753

0.3981 0.0685

0.3516 0.6527

0.2536 0.7357

0.1999 0.4705

0.1573 0.3102

× =

0.2978 0.3516× + ×0.3753 0.2536 = 0.1999

token 1

parameter

FLOP 1 FLOP 2

0.2978 0.3753

0.3981 0.0685

0.3516 0.6527

0.2536 0.7357

0.1999 0.4705

0.1573 0.3102

× =

0.3981 0.3516× + ×0.0685 0.2536 = 0.1573

token 2

parameter

FLOP 1 FLOP 2

Performance improves smoothly with scale

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

Te
st

 L
os

s

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3

Performance improves
smoothly as we increase

model size

Performance improves
smoothly as we increase

dataset size

Performance improves
smoothly as we increase

compute

Kaplan et al. (2020)

https://arxiv.org/abs/2001.08361

Putting scaling laws into practice

M1 M2 M3 M4 M5

1.079 1.018 1.447 1.072 1.112

D1 D2 D3 D4 D5

🥇

old paradigm: train a few models, select the best one

Putting scaling laws into practice

M1

M2

M3

M4

1.966

1.422

1.868

2.002

D1 D2 D3 D4 D5

🥇

new paradigm: train many small models, up-scale the best one

Compute-optimal models

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.

6

ca. 200M parameters

isoflops

Compute-optimal models

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.

6

576 billion TFLOPs 576 billion TFLOPs

optimal model size

optimal dataset size

Large language models can be too large

Figure 1 | Overlaid predictions. We overlay the predictions from our three di�erent approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).

In this work, we revisit the question: Given a fixed FLOPs budget,1 how should one trade-o� model
size and the number of training tokens? To answer this question, we model the final pre-training loss2

!(#, ⇡) as a function of the number of model parameters #, and the number of training tokens, ⇡.
Since the computational budget ⇠ is a deterministic function FLOPs(#, ⇡) of the number of seen
training tokens and model parameters, we are interested in minimizing ! under the constraint
FLOPs(#, ⇡) = ⇠:

#=>B (⇠), ⇡=>B (⇠) = argmin
#,⇡ s.t. FLOPs(#,⇡)=⇠

!(#, ⇡). (1)

The functions #=>B (⇠), and ⇡=>B (⇠) describe the optimal allocation of a computational budget ⇠. We
empirically estimate these functions based on the losses of over 400 models, ranging from under 70M
to over 16B parameters, and trained on 5B to over 400B tokens – with each model configuration
trained for several di�erent training horizons. Our approach leads to considerably di�erent results
than that of Kaplan et al. (2020). We highlight our results in Figure 1 and how our approaches di�er
in Section 2.

Based on our estimated compute-optimal frontier, we predict that for the compute budget used
to train Gopher, an optimal model should be 4 times smaller, while being training on 4 times more
tokens. We verify this by training a more compute-optimal 70B model, called Chinchilla, on 1.4 trillion
tokens. Not only does Chinchilla outperform its much larger counterpart, Gopher, but its reduced
model size reduces inference cost considerably and greatly facilitates downstream uses on smaller
hardware. The energy cost of a large language model is amortized through its usage for inference an
fine-tuning. The benefits of a more optimally trained smaller model, therefore, extend beyond the
immediate benefits of its improved performance.

1For example, knowing the number of accelerators and a target training duration.
2For simplicity, we perform our analysis on the smoothed training loss which is an unbiased estimate of the test loss, as

we are in the infinite data regime (the number of training tokens is less than the number of tokens in the entire corpus).

2

