732A81/TDDE16 Text Mining (HT2024)

Text Classification

Marcel Bollmann

Department of Computer and Information Science (IDA)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Partly adapted from slides by Marco Kuhlmann.

Reminder: Conceptual framework

Zhai and Massung (2016)

Outline

1. Introduction

- Examples
- Statistical Pipeline
- Neural Pipeline

2. Machine Learning

- Training & Testing
- Statistical Classifiers
- Validation

3. Fine-Tuning Language Models

- Language Modelling
- BERT
- Fine-Tuning BERT
- 4. Evaluation
 - The Importance of Baselines
 - Confusion Matrix
 - Precision/Recall/F1
 - Reporting Averages

Introduction to Text Classification

Text Classification 🕨 Introduction

What is text classification?

🥕 Definition

Text classification is the task of categorizing text documents into predefined classes.

- We use the term *documents* to refer to text of any granularity.
 - social media posts
 - newspaper articles
 - entire books
 - single sentences
 - ...

Example: Sentiment analysis

I love it so much! The mic works great!!!! I use it for online live classes, cosplay, and to look cute!! The lightup feature really works great! The app also works great too! The sound sounds amazing too! I just wish it had a case for when I travel.

Not durable. The cord came apart from the audio adjuster. The saddest part is that happens only two months after it was purchased, and no force was applied. Definitely, I will not purchase and I do not recommend the item.

Adapted from Amazon

Example: Topic classification

It took them an hour of huffing and puffing, but Arsenal did something at Stamford Bridge they hadn't managed since September – they scored an away goal in the Premier League.

- × Business
- × Politics
- × Technology
- ✓ Sports
- 🗙 Entertainment

Example: Forensic linguistics

I realized the faxed copy I just received was an outline of the manifesto, using much of the same wording, definitely the same topics and themes. ... I invented [the language analysis] for this case and really, forensic linguistics took off after that.

- James Fitzgerald, profiler

Sources: Wikipedia & Newsweek

The statistical text classification pipeline

Text Classification > Introduction > Statistical Pipeline

Reminder: Documents as tf-idf vectors

	Scandal in Bohemia	Final problem	Empty house	Norwood builder	Dancing men	Retired colourman
Adair	0.0000	0.0000	0.0692	0.0000	0.0000	0.0000
Adler	0.0531	0.0000	0.0000	0.0000	0.0000	0.0000
Lestrade	0.0000	0.0000	0.0291	0.1424	0.0000	0.0000
Moriarty	0.0000	0.0845	0.0528	0.0034	0.0000	0.0000

Documents as count vectors: Bag of words

It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife.

Sentiment analysis with bag-of-words: vectors

word	count
the	4
not	3
and	2
Ι	2
was	2
adjuster	1
after	1
	negatil

Sentiment analysis with bag-of-words: pipeline

The statistical text classification pipeline

Text Classification > Introduction > Statistical Pipeline

scikit-learn 1 3 1

Other versions

Please cite us if you use the software.

User Guide

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Model selection and evaluation
- 4. Inspection
- 5. Visualizations
- 6. Dataset transformations
- 7. Dataset loading utilities
- 8. Computing with scikit-learn
- 9. Model persistence
- 10. Common pitfalls and recommended practices
- 11. Dispatching

User Guide

1. Supervised learning

- ▶ 1.1. Linear Models
- ▶ 1.2. Linear and Quadratic Discriminant Analysis
- 1.3. Kernel ridge regression
- 1.4. Support Vector Machines
- ▶ 1.5. Stochastic Gradient Descent
- ▶ 1.6. Nearest Neighbors
- ▶ 1.7. Gaussian Processes
- ▶ 1.8. Cross decomposition
- ▶ 1.9. Naive Bayes
- 1.10. Decision Trees
- ▶ 1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking
- ▶ 1.12. Multiclass and multioutput algorithms
- 1.13. Feature selection
- ▶ 1.14. Semi-supervised learning
- 1.15. Isotonic regression
- 1.16. Probability calibration
- ▶ 1.17. Neural network models (supervised)

Toggle Menu

Drawbacks of count-based document representations

1. Count-based document representations can easily yield tens of thousands of features.

- computational challenge
- data sparsity most of the entries are zero
- 2. Count-based representations are very limited in capturing dependencies between words in a sentence.
 - "I did **not** have a **good** experience with this product"

n-gram models

- One solution to problem 2 is to represent n-grams instead.
 - *n*-gram: a sequence of *n* consecutive tokens in a text

"I do not recommend the item"

- Unigrams n = 1 *I*, do, not, recommend, the, item
- **Bigrams** n = 2 I do, do not, not recommend, recommend the, the item
- Trigrams n = 3 I do not, do not recommend, not recommend the, recommend the item
- Drawback: Very low frequency counts the higher *n* gets.

The neural text classification pipeline

Training a neural text classifier

- One option is to train a neural network "from scratch."
- It's usually more efficient to fine-tune a pre-trained language model instead.

Important concepts

- documents
- sentiment analysis
- bag of words, *n*-grams
- vectorizer + predictor pipeline

Text Classification as Machine Learning

Text Classification 🕨 Machine Learning

Classification as machine learning

В Α training set learning Hudson River Paul Klee Niche Retail В **Badger** Mountain Linda Chapman Polk Brothers Α В test set evaluation **Charles Keating** Shelf Glacier Aarti Industries

Inspired by DBpedia14: A \sim Natural Place; B \sim Artist; C \sim Company

Training and testing

When we train a classifier, we present it with a **document** *x* and its **gold-standard class** *y* and apply some **learning algorithm**.

Training and testing

Text Classification > Machine Learning > Training & Testing

Choosing a machine learning classifier

r No single type of classifier works best across *all* possible scenarios.

Ibraries like scikit-learn make it very easy to "switch out" one classifier for another:

1	clf = make_pipeline(DecisionTreeClassifier
2	CountVectorizer(),	LogisticRegression
3	MultinomialNB()	RidgeClassifier
4)	SGDClassifier
5	clf.fit(X, y)	SVC
6		

Naive Bayes

- Naive Bayes is a simple probabilistic classifier.
 - Models *P*(class, document), then infers *P*(class|document) via Bayes' rule.
- It is **"naive**" in the sense that it makes strong (= unrealistic) independence assumptions about probabilities.
 - Its estimated probability values are usually not very accurate.
- For text classification, you typically want to use MultinomialNB from scikit-learn.

Naive Bayes decision rule (informally)

Text Classification > Machine Learning > Statistical Classifiers

Generative vs. discriminative models

- Logistic regression is a simple discriminative classifier.
 - Models *P*(class|document) directly
- It is primarily used for **binary classification**.
 - But can be extended to multi-class classification as well
- Logistic regression can be considered the simplest form of a neural network.

The logistic model

• Logistic regression learns a weight matrix and bias vector.

- It requires a **training algorithm** to find parameters that maximize the likelihood of the training data.
 - No closed-form solution like with Naive Bayes.

Finding the best classifier

- A hyperparameter is a parameter of a machine learning model that *you* need to set before the training starts.
 - *Example*: Naive Bayes has a "smoothing constant α "
- Hyperparameter tuning means trying different values to see which works "best."
 - Can have a big impact on your classifier's performance!
- Neural networks tend to have significantly more hyperparameters than statistical models, so tuning them becomes even more crucial.

A problem when searching for the best classifier

• If you train & test repeatedly, your **test set** effectively **becomes part of the training** procedure!

Validating

- One solution: use a separate validation set, also called dev(elopment) set, while tweaking the model.
 - Another solution is cross-validation.

• Use the test set only for the **final evaluation**.

Creating a data split

- Randomly shuffle & split your data into train/dev/test partitions.
 - Typically, you want to reserve most of your data for training.

• **Stratified sampling** is a method of shuffling & splitting so that classes are represented equally in each split.

Important concepts

- train, test, & validation set
- Naive Bayes classifier
- logistic regression classifier
- hyperparameter tuning

Fine-Tuning Language Models for Text Classification

Text Classification > Fine-Tuning Language Models

Language modelling

• What is the **probability** of a sequence of words?

p("I like books") > p("books I like")p("my comfort food is pizza") > p("my comfort food is chairs")

• What is the **conditional probability** of a word given context?

p("pizza"|"my comfort food is") = ?

• These two formulations are equivalent.

Language modelling in practice

Next word prediction

Spelling correction

Source: Grammarly

Masked language modelling

- 1. The capital of **Germany** is Berlin.
- 2. Kenya's athlete broke the world **record** in long jump.
- 3. I know this man, I've seen him before!
- 4. This movie was so **boring** that I almost fell asleep.
- 5. Yesterday we met the/our new neighbours.

WORLD KNOWLEDGE

LEXICAL KNOWLEDGE

CO-REFERENCE

SENTIMENT

SYNTACTICAL CONSTRAINTS

💡 Idea

Training a neural network on the masked language modelling task will result in all of these types of knowledge being "encoded" in its parameters.

BERT: Bidirectional Encoder Representations from Transformers

- **BERT** is a neural network trained primarily on **masked language modelling**.
 - Based on the Transformer architecture
 - Outperformed all other models at the time of its release (2018)
- Spawned an entire "family" of similar models for specific tasks, languages, etc.
 - RoBERTa, NewsBERT, MusicBERT, CamemBERT, GottBERT, WangchanBERTa, BERTopic, ImageBERT, DistilBERT, TinyBERT, SpanBERT, ChemBERTa, ...
- Many of these models can be accessed through the 🗹 HuggingFace Model Hub.

Masked language modelling in BERT

Using BERT for text classification

- Option 1: Feed a sentence into BERT and extract embedding vectors from it.
 - We could then use these vectors instead of bag-of-words to represent documents.

💡 Idea

BERT is already a prediction model. We can simply **re-use** the entire model!

- Option 2: Fine-tune the BERT model on the target task.
 - *fine-tuning* = continuing to train, but with other data or tasks

Fine-tuning a BERT model

- 1. Download a pre-trained BERT model, e.g. from the Z HuggingFace Model Hub.
 - You can use any masked language model (MLM) here, but almost all of them are named after BERT.
- 2. Fine-tune it on your text classification task.
 - The text classification guide from HuggingFace is a good place to get started!

Advantages and downsides of using BERT models

- Much better at encoding the meaning of a linguistic expression.
 - Compared to e.g. counting words
- Pre-trained models exist for almost any language & domain.

- Need more time and resources to train.
 - Efficient fine-tuning requires a GPU
- Expressive power of neural networks not always needed!

🖒 Rule of thumb

Try "simple" methods first; if they don't work well, try fine-tuning a BERT model.

Important concepts

- (masked) language modelling
- BERT models
- fine-tuning

Evaluation of Text Classifiers

Text Classification 🕨 Evaluation

Accuracy

• Accuracy is the proportion of documents for which the classifier was "correct".

$$accuracy = \frac{\# \text{ of correctly classified documents}}{\# \text{ of all documents}}$$

Is an accuracy of 80% good?

The importance of baselines

- Evaluation metrics are no absolute measures of performance.
 - What is "good" depends on the task!

If you hear:You should ask:"This classifier performs very well!""...compared to what?"

- We should judge a classifier's performance by **comparing it** against something else.
 - "Logistic regression achieves better accuracy than Naive Bayes."
- The point of comparison is often called the **baseline**.

Most-frequent-class baseline

• A simple baseline is to always predict the most frequent class in the training data.

A classifier with 80% accuracy could be pretty good here!

A classifier with 80% accuracy is not better than the MFC baseline...

Confusion matrix

Accuracy

	А	В	C
А	58	6	1
В	5	11	2
C	0	7	43

Text Classification > Evaluation > Confusion Matrix

Precision and recall

Precision and **recall** "zoom in" on how good a system is at identifying documents of a specific class.

Precision

When the model predicts class *x*, how often is it correct?

Recall

When the document has class x_r how often does the model predict it?

• The proportion of correctly classified documents among all documents for which the model predicts class *x*.

• The proportion of correctly classified documents among all documents for which the gold-standard class is *x*.

Precision and recall with two classes

- Precision and recall are always computed with respect to a class.
- In a two-class setting, they are usually defined with respect to the positive class.
 - assumes two classes 'positive' and 'negative'

precision = $\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false positives}}$

recall = $\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false negatives}}$

Precision with respect to class B

Recall with respect to class B

F1-measure

- A good system should **balance** between precision and recall.
- The **F1-measure** is the harmonic mean of the two values:

$$F1 = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Classification report in scikit-learn

Reporting averages

• The macro average is the arithmetic mean of the individual per-class scores.

$$F1_{macro} = \frac{\sum_{c} F1(c)}{\# \text{ of classes}}$$

- The micro average weights the per-class scores by the number of documents for the respective class.
 - also "weighted average"

$$F1_{weighted} = \frac{\sum_{c} F1(c) \cdot \#(c)}{\# \text{ of documents}}$$

Reporting averages: Intuition

• Macro average: "each class is equally important"

$$F1_{macro} = \frac{\sum_{c} F1(c)}{\# \text{ of classes}}$$

• Micro average: "each document is equally important"

$$F1_{weighted} = \frac{\sum_{c} F1(c) \cdot \#(c)}{\# \text{ of documents}}$$

- importance of baselines
- most-frequent class baseline
- confusion matrix
- precision, recall, F1-score (in multi-class classification)
- macro & micro/weighted average

